論文の概要: Closing the Responsibility Gap in AI-based Network Management: An Intelligent Audit System Approach
- arxiv url: http://arxiv.org/abs/2502.05608v1
- Date: Sat, 08 Feb 2025 15:30:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:14.441238
- Title: Closing the Responsibility Gap in AI-based Network Management: An Intelligent Audit System Approach
- Title(参考訳): AIベースのネットワーク管理における責任ギャップの閉鎖:インテリジェント監査システムアプローチ
- Authors: Emanuel Figetakis, Ahmed Refaey Hussein,
- Abstract要約: 既存のネットワークパラダイムは、AI(Artificial Intelligence)ベースのネットワーク管理ツールを使用することで、ダウンタイムの低減と、より高いQuality of Experience(QoE)を実現している。
これらのAI管理ツールは、ネットワーク条件の変更に対する自動応答を可能にし、オペレータの運用コストを低減し、全体的なパフォーマンスを改善する。
AIベースの管理ツールを採用することでネットワーク全体のパフォーマンスが向上する一方で、人間の監督、プライバシー侵害、アルゴリズムバイアス、モデル不正確性といった課題も導入されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Existing network paradigms have achieved lower downtime as well as a higher Quality of Experience (QoE) through the use of Artificial Intelligence (AI)-based network management tools. These AI management systems, allow for automatic responses to changes in network conditions, lowering operation costs for operators, and improving overall performance. While adopting AI-based management tools enhance the overall network performance, it also introduce challenges such as removing human supervision, privacy violations, algorithmic bias, and model inaccuracies. Furthermore, AI-based agents that fail to address these challenges should be culpable themselves rather than the network as a whole. To address this accountability gap, a framework consisting of a Deep Reinforcement Learning (DRL) model and a Machine Learning (ML) model is proposed to identify and assign numerical values of responsibility to the AI-based management agents involved in any decision-making regarding the network conditions, which eventually affects the end-user. A simulation environment was created for the framework to be trained using simulated network operation parameters. The DRL model had a 96% accuracy during testing for identifying the AI-based management agents, while the ML model using gradient descent learned the network conditions at an 83% accuracy during testing.
- Abstract(参考訳): 既存のネットワークパラダイムは、AI(Artificial Intelligence)ベースのネットワーク管理ツールを使用することで、ダウンタイムの低減と、より高いQuality of Experience(QoE)を実現している。
これらのAI管理システムは、ネットワーク条件の変更に対する自動応答を可能にし、オペレータの運用コストを低減し、全体的なパフォーマンスを改善する。
AIベースの管理ツールを採用することでネットワーク全体のパフォーマンスが向上する一方で、人間の監督、プライバシー侵害、アルゴリズムバイアス、モデル不正確性といった課題も導入されている。
さらに、これらの課題に対処できないAIベースのエージェントは、ネットワーク全体ではなく、自分自身で計算可能であるべきです。
この説明責任ギャップに対処するために、ディープ強化学習(DRL)モデルと機械学習(ML)モデルからなるフレームワークを提案し、ネットワーク条件に関する意思決定に関与するAIベースの管理エージェントに責任の数値を識別し割り当て、最終的にはエンドユーザに影響を与える。
シミュレーションされたネットワーク操作パラメータを用いて、フレームワークをトレーニングするためのシミュレーション環境が作成された。
DRLモデルはAIベースの管理エージェントを特定するテスト中に96%の精度を示し、勾配降下を用いたMLモデルはテスト中にネットワーク条件を83%の精度で学習した。
関連論文リスト
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI(GenAI)は、カスタマイズされたパーソナライズされたAI生成コンテンツ(AIGC)サービスを可能にするトランスフォーメーション技術として登場した。
これらのサービスは数十億のパラメータを持つGenAIモデルの実行を必要とし、リソース制限の無線エッジに重大な障害を生じさせる。
我々は、AIGC品質とレイテンシメトリクスのトレードオフをバランスさせるために、AIGCサービスのジョイントモデルキャッシングとリソースアロケーションの定式化を導入する。
論文 参考訳(メタデータ) (2024-11-03T07:01:13Z) - Reservoir computing for system identification and predictive control with limited data [3.1484174280822845]
我々は、ベンチマーク制御システムの力学を学習し、モデル予測制御(MPC)の代理モデルとして機能するRNN変種の評価を行う。
エコー状態ネットワーク(ESN)は、計算複雑性の低減、より有効な予測時間、MPC目的関数のコスト削減など、競合するアーキテクチャよりも様々な利点がある。
論文 参考訳(メタデータ) (2024-10-23T21:59:07Z) - Towards Autonomous Cybersecurity: An Intelligent AutoML Framework for Autonomous Intrusion Detection [21.003217781832923]
本稿では,次世代ネットワークにおける自律型サイバーセキュリティの実現に向けた,自動機械学習(AutoML)に基づく自律型IDSフレームワークを提案する。
提案されたAutoMLベースのIDSは、CICIDS 2017と5G-NIDDという2つの公開ベンチマークネットワークセキュリティデータセットで評価された。
この研究は、次世代ネットワークにおける完全自律型サイバーセキュリティへの重要な一歩であり、ネットワークセキュリティアプリケーションに革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-09-05T00:36:23Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
無線エッジネットワークでは、不正に生成されたコンテンツの送信はネットワークリソースを不要に消費する可能性がある。
我々は、AIGC-as-a-serviceの概念を示し、エッジネットワークにAをデプロイする際の課題について議論する。
最適なASP選択のための深層強化学習可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-09T09:30:23Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - Enabling AI Quality Control via Feature Hierarchical Edge Inference [6.490724361345847]
本研究では,エッジサーバとそれに対応する移動体に配置された特徴ネットワークと推論ネットワークからなる特徴階層型EI(FHEI)を提案する。
より大規模な機能では、より優れたAI品質を提供する一方で、より多くの計算と通信負荷が必要になる。
提案したFHEIアーキテクチャの連成通信・計算制御が, 常にいくつかのベンチマークより優れていることが, 広範囲なシミュレーションにより検証された。
論文 参考訳(メタデータ) (2022-11-15T02:54:23Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Detection of Insider Attacks in Distributed Projected Subgradient
Algorithms [11.096339082411882]
汎用ニューラルネットワークは悪質なエージェントの検出とローカライズに特に適していることを示す。
本稿では,連合学習における最先端のアプローチ,すなわち協調型ピアツーピア機械学習プロトコルを採用することを提案する。
シミュレーションでは,AIに基づく手法の有効性と有効性を検証するために,最小二乗問題を考える。
論文 参考訳(メタデータ) (2021-01-18T08:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。