論文の概要: Fractional-Order Federated Learning
- arxiv url: http://arxiv.org/abs/2602.15380v1
- Date: Tue, 17 Feb 2026 06:25:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-18 16:03:17.996034
- Title: Fractional-Order Federated Learning
- Title(参考訳): 分数次フェデレーションラーニング
- Authors: Mohammad Partohaghighi, Roummel Marcia, YangQuan Chen,
- Abstract要約: フェデレートラーニング(FL)は、リモートクライアントがクライアントのプライバシを保護しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
プライバシー保護のメリットにもかかわらず、FLには、収束の遅い、通信コストの高い、非独立性および独立性のない(非IID)データなど、大きな欠点がある。
- 参考スコア(独自算出の注目度): 4.1751058176413105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) allows remote clients to train a global model collaboratively while protecting client privacy. Despite its privacy-preserving benefits, FL has significant drawbacks, including slow convergence, high communication cost, and non-independent-and-identically-distributed (non-IID) data. In this work, we present a novel FedAvg variation called Fractional-Order Federated Averaging (FOFedAvg), which incorporates Fractional-Order Stochastic Gradient Descent (FOSGD) to capture long-range relationships and deeper historical information. By introducing memory-aware fractional-order updates, FOFedAvg improves communication efficiency and accelerates convergence while mitigating instability caused by heterogeneous, non-IID client data. We compare FOFedAvg against a broad set of established federated optimization algorithms on benchmark datasets including MNIST, FEMNIST, CIFAR-10, CIFAR-100, EMNIST, the Cleveland heart disease dataset, Sent140, PneumoniaMNIST, and Edge-IIoTset. Across a range of non-IID partitioning schemes, FOFedAvg is competitive with, and often outperforms, these baselines in terms of test performance and convergence speed. On the theoretical side, we prove that FOFedAvg converges to a stationary point under standard smoothness and bounded-variance assumptions for fractional order $0<α\le 1$. Together, these results show that fractional-order, memory-aware updates can substantially improve the robustness and effectiveness of federated learning, offering a practical path toward distributed training on heterogeneous data.
- Abstract(参考訳): フェデレートラーニング(FL)は、リモートクライアントがクライアントのプライバシを保護しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
プライバシー保護のメリットにもかかわらず、FLには、収束の遅い、通信コストの高い、非独立性および独立性のない(非IID)データなど、大きな欠点がある。
本稿では,Factational-Order Federated Averaging (FOFedAvg) と呼ばれる新しいFedAvg変種を紹介し,Factial-Order Stochastic Gradient Descent (FOSGD) を組み込んで長距離関係やより深い歴史的情報を収集する。
FOFedAvgはメモリ対応の分数次更新を導入し、通信効率を改善し、不均一な非IIDクライアントデータによる不安定を緩和しながら収束を加速する。
FOFedAvgを、MNIST、FEMNIST、CIFAR-10、CIFAR-100、EMNIST、クリーブランド心臓病データセット、Sent140、PneumoniaMNIST、Edge-IIoTsetなどのベンチマークデータセット上で確立されたフェデレーション最適化アルゴリズムと比較した。
FOFedAvgは、様々な非IIDパーティショニングスキーム全体において、テスト性能と収束速度の点で、これらのベースラインと競合し、しばしば優れています。
理論面では、FOFedAvg が標準的な滑らかさと分数次数 $0<α\le 1$ の有界分散仮定の下で定常点に収束することを証明している。
これらの結果から、分数次メモリ対応更新は、フェデレーション学習の堅牢性と有効性を大幅に向上させ、異種データによる分散トレーニングへの実践的な道筋を提供することを示す。
関連論文リスト
- Roughness-Informed Federated Learning [3.8218584696400484]
フェデレートラーニング(FL)は、分散クライアント間の協調モデルトレーニングを可能にする。
FLはクライアントのドリフトによって非独立で同一に分散された(IIDではない)設定で課題に直面します。
本稿ではRoughness Index(RI)ベースの正規化項を組み込むことでクライアントのドリフトを緩和する新しいFLであるRI-FedAvgを提案する。
論文 参考訳(メタデータ) (2026-02-11T07:35:45Z) - CO-PFL: Contribution-Oriented Personalized Federated Learning for Heterogeneous Networks [51.43780477302533]
コントリビューション指向型PFL(CO-PFL)は,グローバルアグリゲーションに対する各クライアントのコントリビューションを動的に推定するアルゴリズムである。
CO-PFLは、パーソナライズ精度、堅牢性、スケーラビリティ、収束安定性において、最先端の手法を一貫して超越している。
論文 参考訳(メタデータ) (2025-10-23T05:10:06Z) - Aiding Global Convergence in Federated Learning via Local Perturbation and Mutual Similarity Information [6.767885381740953]
分散最適化パラダイムとしてフェデレートラーニングが登場した。
本稿では,各クライアントが局所的に摂動勾配のステップを実行する,新しいフレームワークを提案する。
我々は,FedAvgと比較して,アルゴリズムの収束速度が30のグローバルラウンドのマージンとなることを示す。
論文 参考訳(メタデータ) (2024-10-07T23:14:05Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
我々はFedSkipと呼ばれるデータ駆動型アプローチを導入し、フェデレーション平均化を定期的にスキップし、ローカルモデルをクロスデバイスに分散することで、クライアントの最適化を改善する。
我々は、FedSkipがはるかに高い精度、より良いアグリゲーション効率、競合する通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-12-14T13:57:01Z) - FedFM: Anchor-based Feature Matching for Data Heterogeneity in Federated
Learning [91.74206675452888]
本稿では,各クライアントの特徴を共有カテゴリーのアンカーにマッチさせる新しいFedFM法を提案する。
効率と柔軟性を向上させるため,FedFM-Liteと呼ばれるFedFM変種を提案し,クライアントは同期時間と通信帯域幅のコストを少なくしてサーバと通信する。
論文 参考訳(メタデータ) (2022-10-14T08:11:34Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
フェデレートラーニング(FL)は、プライバシを保存する分散機械学習フレームワークとして多くの注目を集めている。
本稿では、トラグラー問題を緩和するために、SCFL(Coded Federated Learning)というコード付きフェデレーション学習フレームワークを提案する。
我々は、相互情報差分プライバシー(MI-DP)によるプライバシー保証を特徴付け、連合学習における収束性能を分析する。
論文 参考訳(メタデータ) (2022-01-25T04:43:29Z) - FedPrune: Towards Inclusive Federated Learning [1.308951527147782]
フェデレートラーニング(Federated Learning, FL)は、分散データの共有モデルをプライバシ保護形式でトレーニングする分散学習技術である。
我々は,この課題に対処するシステムであるFedPruneを提案する。
Central Limit Theoremからの洞察を利用することで、FedPruneは非IIDデータよりも堅牢なパフォーマンスを実現する新しい集約テクニックを取り入れている。
論文 参考訳(メタデータ) (2021-10-27T06:33:38Z) - A Unified Linear Speedup Analysis of Federated Averaging and Nesterov
FedAvg [49.76940694847521]
フェデレーションラーニング(FL)は、互いにプライベートに保持されたデータを共有せずに、参加する一連のデバイスからモデルを共同で学習する。
本稿では,FedAvg(Federated Averaging, FedAvg)に焦点をあてる。
また,FedAvgは収束率や通信効率が異なるが,各ケースで線形スピードアップを享受していることを示す。
論文 参考訳(メタデータ) (2020-07-11T05:59:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。