論文の概要: Investigating GNN Convergence on Large Randomly Generated Graphs with Realistic Node Feature Correlations
- arxiv url: http://arxiv.org/abs/2602.16145v1
- Date: Wed, 18 Feb 2026 02:36:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-19 15:58:30.493934
- Title: Investigating GNN Convergence on Large Randomly Generated Graphs with Realistic Node Feature Correlations
- Title(参考訳): 実数ノード特徴相関を持つ大規模ランダム生成グラフにおけるGNN収束性の検討
- Authors: Mohammed Zain Ali Ahmed,
- Abstract要約: 相関ノード特徴を持つランダムグラフを生成する新しい手法を提案する。
ノードの特徴は、近隣ノード間の相関を保証するために、このような方法でサンプリングされる。
理論解析は、収束がいくつかのケースでは避けられることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: There are a number of existing studies analysing the convergence behaviour of graph neural networks on large random graphs. Unfortunately, the majority of these studies do not model correlations between node features, which would naturally exist in a variety of real-life networks. Consequently, the derived limitations of GNNs, resulting from such convergence behaviour, is not truly reflective of the expressive power of GNNs when applied to realistic graphs. In this paper, we will introduce a novel method to generate random graphs that have correlated node features. The node features will be sampled in such a manner to ensure correlation between neighbouring nodes. As motivation for our choice of sampling scheme, we will appeal to properties exhibited by real-life graphs, particularly properties that are captured by the Barabási-Albert model. A theoretical analysis will strongly indicate that convergence can be avoided in some cases, which we will empirically validate on large random graphs generated using our novel method. The observed divergent behaviour provides evidence that GNNs may be more expressive than initial studies would suggest, especially on realistic graphs.
- Abstract(参考訳): 大規模ランダムグラフ上でのグラフニューラルネットワークの収束挙動を解析する既存研究が多数存在する。
残念ながら、これらの研究の大部分は、様々な実生活ネットワークに自然に存在するであろうノードの特徴間の相関をモデル化していない。
したがって、そのような収束挙動から生じる GNN の導出した制限は、現実的なグラフに適用する場合の GNN の表現力を真に反映するものではない。
本稿では,ノードの特徴が相関するランダムグラフを生成する新しい手法を提案する。
ノードの特徴は、近隣ノード間の相関を保証するために、このような方法でサンプリングされる。
サンプリングスキームを選択する動機として、実数グラフで示される性質、特にバラバシ・アルベルトモデルで捉えた性質にアピールする。
理論解析は、収束を回避できることを強く示し、新しい手法を用いて生成された大きなランダムグラフに対して実験的に検証する。
観察された発散挙動は、GNNが初期の研究が示唆するよりも表現力が高いという証拠を与える。
関連論文リスト
- Generalization of Geometric Graph Neural Networks with Lipschitz Loss Functions [84.01980526069075]
幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
我々は,このGNNの最適経験リスクと最適統計リスクとの一般化ギャップを証明した。
複数の実世界のデータセットに対する実験により、この理論結果を検証する。
論文 参考訳(メタデータ) (2024-09-08T18:55:57Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
グラフニューラルネットワーク(GNN)は、その一般化能力によってサポートされている様々なタスクにおいて、その効果を実証している。
本稿では,多様体モデルから生成される幾何グラフで動作するGNNについて検討する。
本稿では,そのようなモデルミスマッチの存在下でのGNN一般化の堅牢性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T16:00:44Z) - Almost Surely Asymptotically Constant Graph Neural Networks [7.339728196535312]
出力は定数関数に収束し、これらの分類器が一様に表現できる上限となることを示す。
この強い収束現象は、芸術モデルを含む非常に幅広い種類のGNNに適用される。
我々はこれらの知見を実証的に検証し、収束現象がランダムグラフだけでなく、実世界のグラフにも現れることを観察した。
論文 参考訳(メタデータ) (2024-03-06T17:40:26Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Graph Neural Networks with Parallel Neighborhood Aggregations for Graph
Classification [14.112444998191698]
グラフニューラルネットワーク(GNN)モデルを用いたグラフ分類に着目し、並列に配置された近傍グラフ演算子のバンクを用いてノード特徴をプリ計算する。
これらのGNNモデルには、事前計算によるトレーニングと推論時間の削減という自然な利点がある。
本研究は,様々な実世界のデータセット上で,開発モデルが最先端の性能を達成することを数値実験により実証する。
論文 参考訳(メタデータ) (2021-11-22T19:19:40Z) - Implicit vs Unfolded Graph Neural Networks [29.803948965931212]
暗黙的かつ展開的なGNNは、異なる規則間で強いノード分類精度が得られることを示す。
IGNNはメモリ効率がかなり高いが、UGNNモデルはユニークで統合されたグラフアテンション機構と伝搬規則をサポートしている。
論文 参考訳(メタデータ) (2021-11-12T07:49:16Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。