論文の概要: Causally-Guided Automated Feature Engineering with Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2602.16435v1
- Date: Wed, 18 Feb 2026 13:12:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-19 15:58:30.596165
- Title: Causally-Guided Automated Feature Engineering with Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習を用いた因果誘導型自動特徴工学
- Authors: Arun Vignesh Malarkkan, Wangyang Ying, Yanjie Fu,
- Abstract要約: 我々は、AFEを因果的に誘導されたシーケンシャルな決定プロセスとして再編成する枠組みを導入する。
CAFEは、強力なAFEベースラインよりも最大7%改善し、コンバージェンスを低減し、競合する時間とターゲットを提供する。
これらの結果から, 硬い制約ではなく, 軟らかいインダクティブとして用いられる因果構造は, 自動機能工学の堅牢性と効率を大幅に向上させる可能性が示唆された。
- 参考スコア(独自算出の注目度): 22.948935703534428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated feature engineering (AFE) enables AI systems to autonomously construct high-utility representations from raw tabular data. However, existing AFE methods rely on statistical heuristics, yielding brittle features that fail under distribution shift. We introduce CAFE, a framework that reformulates AFE as a causally-guided sequential decision process, bridging causal discovery with reinforcement learning-driven feature construction. Phase I learns a sparse directed acyclic graph over features and the target to obtain soft causal priors, grouping features as direct, indirect, or other based on their causal influence with respect to the target. Phase II uses a cascading multi-agent deep Q-learning architecture to select causal groups and transformation operators, with hierarchical reward shaping and causal group-level exploration strategies that favor causally plausible transformations while controlling feature complexity. Across 15 public benchmarks (classification with macro-F1; regression with inverse relative absolute error), CAFE achieves up to 7% improvement over strong AFE baselines, reduces episodes-to-convergence, and delivers competitive time-to-target. Under controlled covariate shifts, CAFE reduces performance drop by ~4x relative to a non-causal multi-agent baseline, and produces more compact feature sets with more stable post-hoc attributions. These findings underscore that causal structure, used as a soft inductive prior rather than a rigid constraint, can substantially improve the robustness and efficiency of automated feature engineering.
- Abstract(参考訳): 自動機能エンジニアリング(AFE)により、AIシステムは、生の表データから高ユーティリティ表現を自律的に構築できる。
しかし、既存のAFE法は統計ヒューリスティックスに依存しており、分布シフトで失敗する脆い特徴をもたらす。
本稿では、AFEを因果的指導による逐次決定プロセスとして再構築し、強化学習による特徴構築による因果発見をブリッジするフレームワークであるCAFEを紹介する。
第1相は、特徴と対象に対するスパース指向の非巡回グラフを学び、その対象に対する因果的影響に基づいて、特徴を直接的、間接的、あるいは他のものとしてグループ化する。
フェーズIIでは、因果的なグループと変換演算子を選択するために、カスケードなマルチエージェントの深層Q-ラーニングアーキテクチャを使用し、階層的な報酬形成と因果的なグループレベルの探索戦略により、特徴複雑性を制御しながら因果的に妥当な変換を好む。
15の公開ベンチマーク(マクロF1の分類、逆相対絶対誤差の回帰)において、CAFEは強力なAFEベースラインよりも最大7%の改善を実現し、コンバージェンスを低減し、競合する時間対ターゲットを提供する。
制御された共変量シフトの下では、CAFEは非因果的マルチエージェントベースラインに対して性能低下を約4倍削減し、より安定したポストホック属性を持つよりコンパクトな特徴セットを生成する。
これらの結果から, 硬い制約ではなく, 軟らかいインダクティブとして用いられる因果構造は, 自動機能工学の堅牢性と効率を大幅に向上させる可能性が示唆された。
関連論文リスト
- RISER: Orchestrating Latent Reasoning Skills for Adaptive Activation Steering [62.63376387138257]
本稿では,アクティベーション空間における大規模言語モデル(LLM)推論を適応的に制御するプラグイン・アンド・プレイ介入フレームワークを提案する。
RISERは再利用可能な推論ベクトルのライブラリを構築し、軽量ルータを使用して各入力に対して動的に構成する。
ルーターは、タスクレベルの報酬の下で強化学習を通じて最適化され、緊急かつ構成的な方法で潜在する認知的プリミティブを活性化する。
論文 参考訳(メタデータ) (2026-01-14T08:04:33Z) - DaGRPO: Rectifying Gradient Conflict in Reasoning via Distinctiveness-Aware Group Relative Policy Optimization [20.66452395111739]
識別性を考慮したグループ相対ポリシー最適化(DaGRPO)を提案する。
DaGRPOは,(1)微粒なスコアリングを利用して,低差別性でサンプルペアを動的にマスキングするシーケンスレベルのグラディエント・リクティフィケーション,(2)高品質なアンカーを導入し,課題に対処するためのトレーニング信号の復元を行うオフ・ポリシー・データ・アジュメンテーションという2つのコアメカニズムを取り入れている。
詳細な分析により、DaGRPOは勾配の爆発を効果的に軽減し、長鎖推論能力の出現を加速することを確認した。
論文 参考訳(メタデータ) (2025-12-06T07:51:36Z) - Learning Causality for Longitudinal Data [1.2691047660244335]
この論文は、高次元の時間変化データにおける因果推論と因果表現学習の手法を開発する。
最初のコントリビューションは、個別処理効果(ITE)を推定するモデルであるCDVAE(Causal Dynamic Variational Autoencoder)の導入である。
第2のコントリビューションでは,Contrastive Predictive Coding (CPC) とInfoMaxによって強化された RNN に基づく長期的反事実回帰のための効率的なフレームワークを提案する。
第3のコントリビューションは、潜伏が観察された変数にどのように現れるかに対処することでCRLを前進させる。
論文 参考訳(メタデータ) (2025-12-04T16:51:49Z) - Sycophancy Mitigation Through Reinforcement Learning with Uncertainty-Aware Adaptive Reasoning Trajectories [58.988535279557546]
適応推論トラジェクトリを用いたtextbf sycophancy Mitigation を提案する。
SMARTは,分布外の入力に対して強い性能を維持しながら,サイコファンティクスの挙動を著しく低下させることを示した。
論文 参考訳(メタデータ) (2025-09-20T17:09:14Z) - Automatic Failure Attribution and Critical Step Prediction Method for Multi-Agent Systems Based on Causal Inference [8.823529310904162]
マルチエージェントシステム(MAS)は複雑なタスクの自動化に不可欠であるが、その実践的展開は障害帰属の課題によって妨げられている。
マルチグラニュラリティ因果推論に基づくMASのための最初の失敗帰属フレームワークを提案する。
論文 参考訳(メタデータ) (2025-09-10T15:22:00Z) - ERIS: An Energy-Guided Feature Disentanglement Framework for Out-of-Distribution Time Series Classification [51.07970070817353]
理想的な時系列分類(TSC)は不変表現をキャプチャできるべきである。
現在の手法は、真に普遍的な特徴を分離するために必要な意味的な方向性を欠いている。
本稿では,シフト・ロバストネス・フレームワークのためのエンドツーエンドのエネルギー規則化情報を提案する。
論文 参考訳(メタデータ) (2025-08-19T12:13:41Z) - Technical Report: Facilitating the Adoption of Causal Inference Methods Through LLM-Empowered Co-Pilot [44.336297829718795]
CATE-Bは,大規模言語モデル(LLM)をエージェントフレームワーク内で使用して,治療効果推定を通じてユーザを誘導する,オープンソースのコパイロットシステムである。
CATE-B は (i) 因果発見と LLM に基づくエッジオリエンテーションによる構造因果モデルの構築、 (ii) 因果構造とデータセット特性に適合した適切な回帰方法を選択することによるロバストな調整セットの同定を支援する。
論文 参考訳(メタデータ) (2025-08-14T12:20:51Z) - Reasoning through Exploration: A Reinforcement Learning Framework for Robust Function Calling [35.97270347306353]
グループ相対政策最適化(GRPO)に基づく新しいRLフレームワークである textbfEGPO を提案する。
EGPOの中核はエントロピー強化の利点関数であり、モデルのChain-of-Thought(CoT)のエントロピーをポリシー勾配に統合する。
挑戦的なBFCL(Berkeley Function Calling Leaderboard)では、EGPOでトレーニングされた4Bパラメータモデルが、同等サイズのモデルの間で新たな最先端を設定している。
論文 参考訳(メタデータ) (2025-08-07T07:51:38Z) - Hierarchical Budget Policy Optimization for Adaptive Reasoning [49.621779447691665]
階層的予算政策最適化(Hierarchical Budget Policy Optimization, HBPO)は、モデルが問題固有の推論深度を犠牲にすることなく学習できる強化学習フレームワークである。
HBPOは、探索空間を予算制約付き階層(512-2560トークン)に分割する。
大規模な実験により、HBPOは平均トークン使用量を最大60.6%削減し、4つの推論ベンチマークで精度を3.14%改善した。
論文 参考訳(メタデータ) (2025-07-21T17:52:34Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
群分布的ロバスト最適化(群 DRO)は、事前定義された群に対する最悪の損失を最小限にすることができる。
グループDROフレームワークをQ-Diversityを提案して再構築する。
インタラクティブなトレーニングモードによって特徴付けられるQ-Diversityは、アノテーションからグループ識別を緩和し、直接パラメータ化を行う。
論文 参考訳(メタデータ) (2023-05-20T07:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。