Explanation of Superluminal Phenomena Based on Wave-Particle Duality and Proposed Optical Experiments
- URL: http://arxiv.org/abs/1405.3364v7
- Date: Thu, 14 Mar 2024 08:43:30 GMT
- Title: Explanation of Superluminal Phenomena Based on Wave-Particle Duality and Proposed Optical Experiments
- Authors: Hai-Long Zhao,
- Abstract summary: An explanation for superluminal phenomena based on wave-particle duality of photons is suggested.
A couple of experiments are proposed to test the superluminal phenomena.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An explanation for superluminal phenomena based on wave-particle duality of photons is suggested. A single photon may be regarded as a wave packet, whose spatial extension is its coherence volume. As a photon propagates as a wave train in vacuum, its velocity is just the speed of light. When it tunnels through a barrier as a particle, its wave function collapses and it will travel faster than light. Superluminal motion can occur only within the coherence length and the time constrained by uncertainty principle. A massive particle cannot be superluminal during the tunneling process. So superluminality does not violate causality. As for the superluminal and negative group velocities in anomalously dispersive medium, they are merely reshaping effect of the pulse, and they will become subluminal at large distances. A couple of experiments are proposed to test the superluminal phenomena.
Related papers
- Nonlinear Quantum Optics in an Atomic Cavity [0.0]
We will see how a cavity formed of subwavelength lattices of two-level atoms can confine photons to a nonlinear environment for a long time.
This speaks of a strong photon-photon interaction within the cavity.
This analytical description has the potential to lead to an exact study of the many-body physics of interacting photons in a two-dimensional setting.
arXiv Detail & Related papers (2023-11-07T11:54:48Z) - Special Theory of Relativity for a Graded Index Fibre [0.0]
We consider how light is characterised in a material, where the speed of light is different from that in a vacuum.
The wavelength in the moving frame changes from the red-shift to the blue-shift upon increasing the speed of the frame.
The corresponding energy of the light also changes sign from positive to negative, while momentum is always positive.
arXiv Detail & Related papers (2023-03-30T03:40:40Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Down-conversion of a single photon as a probe of many-body localization [0.0]
In a non-linear medium, even a single photon would decay by down-converting (splitting) into lower frequency photons with the same total energy.
In this case, the photon's fate becomes the long-standing question of many-body localization (MBL)
Our result introduces a new platform to explore fundamentals of MBL without having to control many atoms or qubits.
arXiv Detail & Related papers (2022-03-31T17:11:12Z) - Experimental Higher-Order Interference in a Nonlinear Triple Slit [50.591267188664666]
We experimentally show that nonlinear evolution can in fact lead to higher-order interference.
Our work shows that nonlinear evolution could open a loophole for experiments attempting to verify Born's rule by ruling out higher-order interference.
arXiv Detail & Related papers (2021-12-13T19:05:38Z) - Measuring the time atoms spend in the excited state due to a photon they
don't absorb [0.0]
In an experiment with ultra-cold Rubidium atoms, we simultaneously record whether atoms are excited by incident photons and whether those photons are transmitted.
We find that the average time atoms spend in the excited state due to one transmitted photon is not zero, but rather (77 $pm$ 16)% of the time the average incident photon causes them to spend in the excited state.
arXiv Detail & Related papers (2020-10-05T17:59:06Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z) - Shaking photons from the vacuum: acceleration radiation from vibrating
atoms [0.0]
We show that merely by shaking the atom, in simple harmonic motion, can have the same effect.
We propose a circuit-QED potential implementation that yields transition rates of $sim 10-4,rm Hz$, which may be detectable experimentally.
arXiv Detail & Related papers (2020-03-04T18:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.