Graphical Structures for Design and Verification of Quantum Error
Correction
- URL: http://arxiv.org/abs/1611.08012v4
- Date: Fri, 23 Jun 2023 10:10:38 GMT
- Title: Graphical Structures for Design and Verification of Quantum Error
Correction
- Authors: Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren,
and Dominic Horsman
- Abstract summary: We introduce a high-level graphical framework for designing and analysing quantum error correcting codes.
The framework is based on the diagrammatic tools of the zx-calculus of quantum observables.
We show how CSS codes form a subset of CPC codes and, more generally, how to compute stabilizers for a CPC code.
- Score: 3.9146761527401424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a high-level graphical framework for designing and analysing
quantum error correcting codes, centred on what we term the coherent parity
check (CPC). The graphical formulation is based on the diagrammatic tools of
the zx-calculus of quantum observables. The resulting framework leads to a
construction for stabilizer codes that allows us to design and verify a broad
range of quantum codes based on classical ones, and that gives a means of
discovering large classes of codes using both analytical and numerical methods.
We focus in particular on the smaller codes that will be the first used by
near-term devices. We show how CSS codes form a subset of CPC codes and, more
generally, how to compute stabilizers for a CPC code. As an explicit example of
this framework, we give a method for turning almost any pair of classical
[n,k,3] codes into a [[2n - k + 2, k, 3]] CPC code. Further, we give a simple
technique for machine search which yields thousands of potential codes, and
demonstrate its operation for distance 3 and 5 codes. Finally, we use the
graphical tools to demonstrate how Clifford computation can be performed within
CPC codes. As our framework gives a new tool for constructing small- to
medium-sized codes with relatively high code rates, it provides a new source
for codes that could be suitable for emerging devices, while its zx-calculus
foundations enable natural integration of error correction with graphical
compiler toolchains. It also provides a powerful framework for reasoning about
all stabilizer quantum error correction codes of any size.
Related papers
- List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
arXiv Detail & Related papers (2024-05-07T06:47:12Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Spatially-Coupled QDLPC Codes [3.6622737533847936]
We describe toric codes as quantum counterparts of classical spatially-coupled (2D-SC) codes.
We introduce spatially-coupled quantum LDPC (SC-QLDPC) codes as a class of convolutional LDPC codes.
This paper focuses on QLDPC codes with rate less than 1/10, but we construct 2D-SC HGP codes with small memories, higher rates (about 1/3), and superior thresholds.
arXiv Detail & Related papers (2023-04-29T00:57:57Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Quantum Tanner codes [0.38073142980732994]
We prove a theorem that simultaneously gives a growing minimum distance for the quantum code and recovers the local testability of the Dinur et al. code.
arXiv Detail & Related papers (2022-02-28T09:35:31Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Quantum Lego: Building Quantum Error Correction Codes from Tensor
Networks [0.0]
We represent complex code constructions as tensor networks built from the tensors of simple codes or states.
The framework endows a network geometry to any code it builds and is valid for constructing stabilizer codes.
We lay out some examples where we glue together simple stabilizer codes to construct non-trivial codes.
arXiv Detail & Related papers (2021-09-16T18:00:00Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
We show that trellis decoders have strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed.
The modified decoder works for any stabilizer code $S$ and separates into two parts: a one-time, offline which builds a compact, graphical representation of the normalizer of the code, $Sperp$, and a quick, parallel, online computation using the Viterbi algorithm.
arXiv Detail & Related papers (2021-06-15T16:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.