論文の概要: A unified framework for hard and soft clustering with regularized optimal transport
- arxiv url: http://arxiv.org/abs/1711.04366v2
- Date: Thu, 7 Mar 2024 20:43:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-17 17:28:01.818985
- Title: A unified framework for hard and soft clustering with regularized optimal transport
- Title(参考訳): 正規化された最適輸送を伴う硬質・軟質クラスタリングのための統一的枠組み
- Authors: Jean-Frédéric Diebold, Nicolas Papadakis, Arnaud Dessein, Charles-Alban Deledalle,
- Abstract要約: 本稿では、エントロピー正規化を伴う最適輸送問題として、離散データからFinitelamblambdageq 0を推定する問題を定式化する。
- 参考スコア(独自算出の注目度): 5.715859759904031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we formulate the problem of inferring a Finite Mixture Model from discrete data as an optimal transport problem with entropic regularization of parameter $\lambda\geq 0$. Our method unifies hard and soft clustering, the Expectation-Maximization (EM) algorithm being exactly recovered for $\lambda=1$. The family of clustering algorithm we propose rely on the resolution of nonconvex problems using alternating minimization. We study the convergence property of our generalized $\lambda-$EM algorithms and show that each step in the minimization process has a closed form solution when inferring finite mixture models of exponential families. Experiments highlight the benefits of taking a parameter $\lambda>1$ to improve the inference performance and $\lambda\to 0$ for classification.
- Abstract(参考訳): 本稿では,パラメータ$\lambda\geq 0$のエントロピー正規化を用いた最適輸送問題として,離散データから有限混合モデルを推定する問題を定式化する。
我々の手法はハードとソフトのクラスタリングを統一し、期待最大化(EM)アルゴリズムは$\lambda=1$で正確に回収される。
クラスタリングアルゴリズムのファミリは、交互最小化を用いた非凸問題の解法に依存する。
一般化された$\lambda-$EMアルゴリズムの収束性について検討し、指数列の有限混合モデルを推定する際に、最小化過程の各ステップが閉じた解を持つことを示す。
実験では、推論性能を改善するためにパラメータ $\lambda>1$ と分類のための $\lambda\to 0$ の利点を強調している。
関連論文リスト
- An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization [16.709026203727007]
下層問題の解集合を局所的に近似する新しい双レベル最適化法を提案する。
我々は,提案手法の性能を,最適度と不実現可能性の誤差の観点から測定する。
論文 参考訳(メタデータ) (2024-02-12T22:34:53Z) - Strictly Low Rank Constraint Optimization -- An Asymptotically
$\mathcal{O}(\frac{1}{t^2})$ Method [5.770309971945476]
最適解における空間性を促進するために,テキスト規則化を用いた非テキスト・非滑らかな問題のクラスを提案する。
我々のアルゴリズムは、滑らかな凸問題に対する一階法に対するネステロフの最適収束と全く同じ$Ofrac(t2)$の特異収束を達成することができることを示す。
論文 参考訳(メタデータ) (2023-07-04T16:55:41Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - On the Global Solution of Soft k-Means [159.23423824953412]
本稿では,ソフトk-平均問題の解法を全世界で提案する。
ミニマルボリュームソフトkMeans (MVSkM) と呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2022-12-07T12:06:55Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
我々は,非制約のmin-max最適化問題のグローバルなサドル点を求めるために,不正確な正規化ニュートン型手法を提案し,解析する。
提案手法は有界集合内に留まるイテレートを生成し、その反復は制限関数の項で$O(epsilon-2/3)$内の$epsilon$-saddle点に収束することを示す。
論文 参考訳(メタデータ) (2022-10-23T21:24:37Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
合成最適化のためのプロジェクションフリー条件付き勾配型アルゴリズムを提案する。
提案アルゴリズムで要求されるオラクルの数と線形最小化オラクルは,それぞれ$mathcalO_T(epsilon-2)$と$mathcalO_T(epsilon-3)$である。
論文 参考訳(メタデータ) (2022-02-09T06:05:38Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - Convergence Analysis of Nonconvex Distributed Stochastic Zeroth-order
Coordinate Method [3.860616339202303]
本稿では,$ZOn$局所コスト関数の合計により形成されるグローバルコスト関数を最小化する分散非最適化問題について検討する。
エージェントは問題を解くためにzo座標法を近似する。
論文 参考訳(メタデータ) (2021-03-24T03:07:46Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
非拡張写像、単調リプシッツ作用素、近位写像の間の接続を利用して、単調包含問題に対する準最適解を得る。
これらの結果は、変分不等式問題に対する強い解の近似、凸凸凹 min-max 最適化問題の近似、および min-max 最適化問題における勾配のノルムの最小化について、ほぼ最適に保証される。
論文 参考訳(メタデータ) (2020-02-20T17:12:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。