論文の概要: Alternating Iteratively Reweighted $\ell_1$ and Subspace Newton Algorithms for Nonconvex Sparse Optimization
- arxiv url: http://arxiv.org/abs/2407.17216v4
- Date: Sun, 30 Mar 2025 16:19:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:56.623431
- Title: Alternating Iteratively Reweighted $\ell_1$ and Subspace Newton Algorithms for Nonconvex Sparse Optimization
- Title(参考訳): 非凸スパース最適化のための反復再重み付き$\ell_1$および部分空間ニュートンアルゴリズム
- Authors: Hao Wang, Xiangyu Yang, Yichen Zhu,
- Abstract要約: 本稿では,可微分損失関数と非滑らか正規化関数の和を最小化する新しいハイブリッドアルゴリズムを提案する。
臨界点へのグローバル収束を証明し、適切な条件下では、アルゴリズムが既存の手法より優れていることを示す。
- 参考スコア(独自算出の注目度): 11.56128809794923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel hybrid algorithm for minimizing the sum of a continuously differentiable loss function and a nonsmooth, possibly nonconvex, sparse regularization function. The proposed method alternates between solving a reweighted $\ell_1$-regularized subproblem and performing an inexact subspace Newton step. The reweighted $\ell_1$-subproblem allows for efficient closed-form solutions via the soft-thresholding operator, avoiding the computational overhead of proximity operator calculations. As the algorithm approaches an optimal solution, it maintains a stable support set, ensuring that nonzero components stay uniformly bounded away from zero. It then switches to a perturbed regularized Newton method, further accelerating the convergence. We prove global convergence to a critical point and, under suitable conditions, demonstrate that the algorithm exhibits local linear and quadratic convergence rates. Numerical experiments show that our algorithm outperforms existing methods in both efficiency and solution quality across various model prediction problems.
- Abstract(参考訳): 本稿では,連続的に微分可能な損失関数と非滑らかで,非凸なスパース正規化関数の和を最小化する,新しいハイブリッドアルゴリズムを提案する。
提案手法は、reweighted $\ell_1$-regularized subproblem の解法と、不正確な部分空間 Newton ステップの実行を交互に行う。
再重み付き $\ell_1$-subproblem はソフトスレッショルド演算子による効率的な閉形式解を可能にし、近接演算子の計算オーバーヘッドを回避する。
アルゴリズムが最適解に近づくと、安定なサポートセットを維持し、非零成分がゼロから一様に離れないようにする。
その後、摂動正規化ニュートン法に切り替え、収束をさらに加速する。
臨界点への大域収束を証明し、適切な条件下では、アルゴリズムが局所線形および二次収束率を示すことを示す。
数値実験により,本アルゴリズムは様々なモデル予測問題において,効率と解品質の両方において既存手法よりも優れていた。
関連論文リスト
- A Regularized Newton Method for Nonconvex Optimization with Global and Local Complexity Guarantees [31.772894924814395]
2階局所呼び出しに関して、$epsilon-frac32) + tilde O$と、Hessian-vectorvectorsに対して$tilde O(epsilon-frac74)$という大域的な複雑さを見出す。
予備的な数値計算の結果は、我々のアルゴリズムを示している。
論文 参考訳(メタデータ) (2025-02-07T10:10:10Z) - The inexact power augmented Lagrangian method for constrained nonconvex optimization [44.516958213972885]
この研究は、強大な拡張ラグランジアン用語を導入し、拡大項はユークリッドのノルムを権力へと引き上げる。
その結果, 長期化に低消費電力を用いると, 残余の減少が遅くなるにもかかわらず, より高速な成長が期待できることがわかった。
以上の結果より, 持続時間の短縮には低消費電力が有効であるが, 残留率が低下する傾向が示唆された。
論文 参考訳(メタデータ) (2024-10-26T11:31:56Z) - Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
本稿では,1次と2次の両方の定常点を見つけるための信頼逐次準計画法を提案する。
本手法は, 1次定常点に収束するため, 対象対象の近似を最小化して定義された各イテレーションの勾配ステップを計算する。
2階定常点に収束するため,本手法は負曲率を減少するヘッセン行列を探索する固有ステップも計算する。
論文 参考訳(メタデータ) (2024-09-24T04:39:47Z) - Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
離散メモリレスソースに対するRDPF(Ralse-Distortion-Perception Function)の計算について検討した。
最適パラメトリック解を特徴付ける。
歪みと知覚制約について十分な条件を提供する。
論文 参考訳(メタデータ) (2024-08-27T12:50:12Z) - Efficient Low-rank Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization [8.879403568685499]
パラメータの平滑化に適応的な更新戦略を導入する。
この振る舞いは、アルゴリズムを数回繰り返した後に、効果的に問題を解決するものに変えます。
すべてのイテレーションが重要なものであることを保証し、グローバルに提案された実験を証明します。
論文 参考訳(メタデータ) (2024-06-22T02:37:13Z) - Nonsmooth Projection-Free Optimization with Functional Constraints [12.20060970177791]
本稿では,制約付き非平滑凸計算のための段階的アルゴリズムを提案する。
提案アルゴリズムは一般凸関数不等式制約で非滑らかな問題を扱うことができる。
決定論的下位段階が下位段階に置き換わる際にも同様のパフォーマンスが観察される。
論文 参考訳(メタデータ) (2023-11-18T23:06:33Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Strictly Low Rank Constraint Optimization -- An Asymptotically
$\mathcal{O}(\frac{1}{t^2})$ Method [5.770309971945476]
最適解における空間性を促進するために,テキスト規則化を用いた非テキスト・非滑らかな問題のクラスを提案する。
我々のアルゴリズムは、滑らかな凸問題に対する一階法に対するネステロフの最適収束と全く同じ$Ofrac(t2)$の特異収束を達成することができることを示す。
論文 参考訳(メタデータ) (2023-07-04T16:55:41Z) - Accelerated First-Order Optimization under Nonlinear Constraints [61.98523595657983]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
我々は,非制約のmin-max最適化問題のグローバルなサドル点を求めるために,不正確な正規化ニュートン型手法を提案し,解析する。
提案手法は有界集合内に留まるイテレートを生成し、その反復は制限関数の項で$O(epsilon-2/3)$内の$epsilon$-saddle点に収束することを示す。
論文 参考訳(メタデータ) (2022-10-23T21:24:37Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
非線形一般化ナッシュ均衡問題(NGNEP)における平衡計算の問題を考える。
我々の貢献は、2次ペナルティ法と拡張ラグランジアン法に基づく2つの単純な一階アルゴリズムフレームワークを提供することである。
これらのアルゴリズムに対する漸近的理論的保証を提供する。
論文 参考訳(メタデータ) (2022-04-07T00:11:05Z) - Accelerated SGD for Non-Strongly-Convex Least Squares [14.010916616909743]
非強凸設定における最小二乗回帰問題の近似を考察する。
本稿では,問題のノイズに依存して最適な予測誤差率を実現するための,最初の実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T14:39:33Z) - SCORE: Approximating Curvature Information under Self-Concordant
Regularization [0.0]
本稿では,新たな入力を受信するたびに最小化速度を更新する自己調和正規化アルゴリズム(GGN-SCORE)を提案する。
提案アルゴリズムはヘッセン行列の2階情報構造を利用して計算オーバーヘッドを削減する。
論文 参考訳(メタデータ) (2021-12-14T13:03:04Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Newton-LESS: Sparsification without Trade-offs for the Sketched Newton
Update [88.73437209862891]
2階最適化において、潜在的なボトルネックは繰り返しごとに最適化関数のヘシアン行列を計算することである。
本稿では,ガウススケッチ行列を劇的に分散させることにより,スケッチの計算コストを大幅に削減できることを示す。
ニュートン=ルネッサはガウス埋め込みとほぼ同じ問題に依存しない局所収束率を享受していることを証明した。
論文 参考訳(メタデータ) (2021-07-15T17:33:05Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
問題に対処するための新しいアルゴリズム - Momentum- Single-timescale Approximation (MSTSA) を提案する。
MSTSAでは、低いレベルのサブプロブレムに対する不正確な解決策のため、反復でエラーを制御することができます。
論文 参考訳(メタデータ) (2021-02-15T07:10:33Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
定常点に収束する一般化外空間を提案する。
このアルゴリズムは一般の$p$ノルド空間だけでなく、一般の$p$次元ベクトル空間にも適用される。
論文 参考訳(メタデータ) (2020-10-31T21:35:42Z) - A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization [25.73397307080647]
本稿では,汎用凸あるいは非汎用機械目標の新しいモデルを提案する。
本稿では,各サブプロブレムの点レベルを徐々に緩和した制約を解くアルゴリズムを提案する。
我々は,新しい数値スケール問題の有効性を実証する。
論文 参考訳(メタデータ) (2020-10-23T05:24:05Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
本稿では、収束保証付き非正則正規化器のためのワーキングセットアルゴリズムを提案する。
その結果,ブロックコーディネートや勾配ソルバの完全解法と比較して高い利得を示した。
論文 参考訳(メタデータ) (2020-06-24T07:40:31Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。