論文の概要: The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation
- arxiv url: http://arxiv.org/abs/1802.07228v2
- Date: Sun, 01 Dec 2024 17:59:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:57:09.593090
- Title: The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation
- Title(参考訳): 人工知能の悪用:予測、予防、緩和
- Authors: Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Peter Eckersley, Ben Garfinkel, Allan Dafoe, Paul Scharre, Thomas Zeitzoff, Bobby Filar, Hyrum Anderson, Heather Roff, Gregory C. Allen, Jacob Steinhardt, Carrick Flynn, Seán Ó hÉigeartaigh, SJ Beard, Haydn Belfield, Sebastian Farquhar, Clare Lyle, Rebecca Crootof, Owain Evans, Michael Page, Joanna Bryson, Roman Yampolskiy, Dario Amodei,
- Abstract要約: このレポートは、悪意あるAI使用による潜在的なセキュリティ脅威の状況を調査し、これらの脅威を予測し、予防し、軽減する方法を提案する。
AIがデジタル、物理的、政治的領域における脅威の風景に影響を与える方法を分析した後、AI研究者や他の利害関係者に対して4つの高いレベルのレコメンデーションを行う。
- 参考スコア(独自算出の注目度): 34.08068963253976
- License:
- Abstract: This report surveys the landscape of potential security threats from malicious uses of AI, and proposes ways to better forecast, prevent, and mitigate these threats. After analyzing the ways in which AI may influence the threat landscape in the digital, physical, and political domains, we make four high-level recommendations for AI researchers and other stakeholders. We also suggest several promising areas for further research that could expand the portfolio of defenses, or make attacks less effective or harder to execute. Finally, we discuss, but do not conclusively resolve, the long-term equilibrium of attackers and defenders.
- Abstract(参考訳): このレポートは、悪意あるAI使用による潜在的なセキュリティ脅威の状況を調査し、これらの脅威を予測し、予防し、軽減する方法を提案する。
AIがデジタル、物理的、政治的領域における脅威の風景に影響を与える方法を分析した後、AI研究者や他の利害関係者に対して4つの高いレベルのレコメンデーションを行う。
また、防衛のポートフォリオを拡大したり、攻撃を効果的に、あるいは実行しにくくする可能性のある、さらなる研究のためのいくつかの有望な領域についても提案する。
最後に、攻撃者と防御者の長期的な均衡について論じるが、決定的には解決しない。
関連論文リスト
- Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - The Shadow of Fraud: The Emerging Danger of AI-powered Social Engineering and its Possible Cure [30.431292911543103]
社会工学(SE)攻撃は個人と組織双方にとって重大な脅威である。
人工知能(AI)の進歩は、よりパーソナライズされ説得力のある攻撃を可能にすることによって、これらの脅威を強化する可能性がある。
本研究は、SE攻撃機構を分類し、その進化を分析し、これらの脅威を測定する方法を探る。
論文 参考訳(メタデータ) (2024-07-22T17:37:31Z) - Exploring Vulnerabilities and Protections in Large Language Models: A Survey [1.6179784294541053]
本稿では,Large Language Models (LLMs) のセキュリティ課題について検討する。
Prompt HackingとAdversarial Attacksの2つの主要分野に焦点を当てている。
これらのセキュリティ問題の詳細を明らかにすることで、この調査はレジリエントなAIシステム構築に関する広範な議論に貢献する。
論文 参考訳(メタデータ) (2024-06-01T00:11:09Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - A Novel Approach to Guard from Adversarial Attacks using Stable Diffusion [0.0]
我々の提案は、AI Guardianフレームワークに対する別のアプローチを提案する。
トレーニングプロセスに敵対的な例を含める代わりに、AIシステムをトレーニングせずに行うことを提案する。
これは、より広い範囲の攻撃に対して本質的に回復力のあるシステムを構築することを目的としています。
論文 参考訳(メタデータ) (2024-05-03T04:08:15Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
最近の研究で、人工知能のセキュリティの研究と実践のギャップが特定されている。
我々は、AIセキュリティ研究で最も研究されている6つの攻撃の脅威モデルを再検討し、実際にAIの使用と一致させる。
論文 参考訳(メタデータ) (2023-11-16T16:09:44Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
我々は、敵の目標、知識、攻撃ベクトルに応じて、KGRに対するセキュリティ脅威を体系化する。
我々は、このような脅威をインスタンス化する新しいタイプの攻撃であるROARを提示する。
ROARに対する潜在的な対策として,潜在的に有毒な知識のフィルタリングや,対向的な拡張クエリによるトレーニングについて検討する。
論文 参考訳(メタデータ) (2023-05-03T18:47:42Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
この調査は、組織に対する攻撃的なAIの脅威を調査する。
まず、AIが敵の方法、戦略、目標、および全体的な攻撃モデルをどのように変えるかについて議論する。
そして、文献レビューを通じて、敵が攻撃を強化するために使用できる33の攻撃的AI能力を特定します。
論文 参考訳(メタデータ) (2021-06-30T01:03:28Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
近年、ほとんどのAIモデルは高度なハッキング技術に弱い。
この課題は、敵AIの研究努力を共同で進めるきっかけとなった。
我々は、AIアプリケーションに対する敵攻撃を実証する総合的なサイバーセキュリティレビューを提示する。
論文 参考訳(メタデータ) (2021-02-09T06:06:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。