Classical Verification of Quantum Computations
- URL: http://arxiv.org/abs/1804.01082v3
- Date: Fri, 8 Dec 2023 01:34:18 GMT
- Title: Classical Verification of Quantum Computations
- Authors: Urmila Mahadev
- Abstract summary: We present the first protocol allowing a classical computer to interactively verify the result of an efficient quantum computation.
We achieve this by constructing a measurement protocol, which enables a classical verifier to use a quantum prover as a trusted measurement device.
- Score: 2.1756081703276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the first protocol allowing a classical computer to interactively
verify the result of an efficient quantum computation. We achieve this by
constructing a measurement protocol, which enables a classical verifier to use
a quantum prover as a trusted measurement device. The protocol forces the
prover to behave as follows: the prover must construct an n qubit state of his
choice, measure each qubit in the Hadamard or standard basis as directed by the
verifier, and report the measurement results to the verifier. The soundness of
this protocol is enforced based on the assumption that the learning with errors
problem is computationally intractable for efficient quantum machines.
Related papers
- On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit [0.5497663232622965]
We present and experimentally demonstrate a novel approach to verification and benchmarking of quantum computing.
Unlike previous information-theoretically secure verification protocols, our approach is implemented entirely on-chip.
Our results pave the way for more accessible and efficient verification and benchmarking strategies in near-term quantum devices.
arXiv Detail & Related papers (2024-10-31T16:54:41Z) - Towards a benchmark for quantum computers based on an iterated post-selective protocol [0.0]
We propose to employ the quantum state matching protocol for the purpose of testing and benchmarking quantum computers.
By comparing measured values with the theoretical conditional probability of the single, final post-selected qubit, we define a benchmark metric.
A careful analysis of the measured values indicates that its dependence on the initial phase can reveal useful information about coherent gate errors of the quantum device.
arXiv Detail & Related papers (2024-10-09T16:54:09Z) - Unconditional verification of quantum computation with classical light [0.0]
Existing verification protocols conducted between a quantum computer and a verifier necessitate quantum communication to unconditionally detect any malicious behavior of the quantum computer.
We propose a "physically classical" verification protocol in which the verifier just sends coherent light to the quantum computer.
arXiv Detail & Related papers (2024-03-21T05:38:09Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Cross-Platform Verification in Quantum Networks [0.7734726150561088]
We describe and analyze efficient cross-platform verification protocols for quantum states.
We show how these can be used to verify computations.
As a proof of principle, we implement basic versions of these schemes on available quantum processors.
arXiv Detail & Related papers (2022-12-15T13:07:33Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.