Unconditional verification of quantum computation with classical light
- URL: http://arxiv.org/abs/2403.14142v2
- Date: Fri, 29 Mar 2024 15:50:34 GMT
- Title: Unconditional verification of quantum computation with classical light
- Authors: Yuki Takeuchi, Akihiro Mizutani,
- Abstract summary: Existing verification protocols conducted between a quantum computer and a verifier necessitate quantum communication to unconditionally detect any malicious behavior of the quantum computer.
We propose a "physically classical" verification protocol in which the verifier just sends coherent light to the quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Verification of quantum computation is a task to efficiently check whether an output given from a quantum computer is correct. Existing verification protocols conducted between a quantum computer to be verified and a verifier necessitate quantum communication to unconditionally detect any malicious behavior of the quantum computer solving any promise problem in ${\sf BQP}$. In this paper, we remove the necessity of the communication of qubits by proposing a "physically classical" verification protocol in which the verifier just sends coherent light to the quantum computer.
Related papers
- On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit [0.5497663232622965]
We present and experimentally demonstrate a novel approach to verification and benchmarking of quantum computing.
Unlike previous information-theoretically secure verification protocols, our approach is implemented entirely on-chip.
Our results pave the way for more accessible and efficient verification and benchmarking strategies in near-term quantum devices.
arXiv Detail & Related papers (2024-10-31T16:54:41Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Harnessing Coding Theory for Reliable Network Quantum Communication [7.469588051458094]
We review repeater-based quantum networks, emphasizing the roles of coding theory and fault-tolerant quantum operations.
We highlight that fault-tolerant implementation of the Bell measurement enables reliable quantum communication without requiring a universal set of quantum gates.
arXiv Detail & Related papers (2024-02-29T17:32:08Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Quantum computation capability verification protocol for NISQ devices
with dihedral coset problem [0.4061135251278187]
We propose an interactive protocol for one party (the verifier) holding a quantum computer to verify the quantum computation power of another party's (the prover) device via a one-way quantum channel.
We conduct a 4-qubit experiment on one of IBM Q devices.
arXiv Detail & Related papers (2022-02-14T19:00:58Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Classical Verification of Quantum Computations [2.1756081703276]
We present the first protocol allowing a classical computer to interactively verify the result of an efficient quantum computation.
We achieve this by constructing a measurement protocol, which enables a classical verifier to use a quantum prover as a trusted measurement device.
arXiv Detail & Related papers (2018-04-03T17:53:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.