論文の概要: Stylized innovation: generating timelines by interrogating incrementally
available randomised dictionaries
- arxiv url: http://arxiv.org/abs/1806.07722v3
- Date: Thu, 12 Oct 2023 18:51:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 18:43:45.126121
- Title: Stylized innovation: generating timelines by interrogating incrementally
available randomised dictionaries
- Title(参考訳): stylized innovation:インクリメンタルに利用可能なランダム化辞書の尋問によるタイムライン生成
- Authors: Paul Kinsler
- Abstract要約: イノベーションを理解する上で重要な課題は、動的で進行中のプロセスであることです。
私は、サンプル化されたイノベーションのタイムラインをホストするために使用できる一連の総合的なイノベーションWeb"辞書"を作成します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key challenge when trying to understand innovation is that it is a dynamic,
ongoing process, which can be highly contingent on ephemeral factors such as
culture, economics, or luck. This means that any analysis of the real-world
process must necessarily be historical - and thus probably too late to be most
useful - but also cannot be sure what the properties of the web of connections
between innovations is or was. Here I try to address this by designing and
generating a set of synthetic innovation web "dictionaries" that can be used to
host sampled innovation timelines, probe the overall statistics and behaviours
of these processes, and determine the degree of their reliance on the structure
or generating algorithm. Thus, inspired by the work of Fink, Reeves, Palma and
Farr (2017) on innovation in language, gastronomy, and technology, I study how
new symbol discovery manifests itself in terms of additional "word" vocabulary
being available from dictionaries generated from a finite number of symbols.
Several distinct dictionary generation models are investigated using numerical
simulation, with emphasis on the scaling of knowledge as dictionary generators
and parameters are varied, and the role of which order the symbols are
discovered in.
- Abstract(参考訳): イノベーションを理解する上で重要な課題は、それが動的で進行中のプロセスであり、文化、経済学、運といった短命な要因に強く依存していることだ。
これはつまり、現実世界のプロセスのあらゆる分析は、必ず歴史的であり、したがっておそらく最も有用になるには遅すぎる。
ここでは、サンプル化されたイノベーションタイムラインをホストし、これらのプロセスの全体的な統計と振る舞いを調査し、それらの構造や生成アルゴリズムへの依存度を決定するために使用できる一連の総合的なイノベーションWeb"辞書"を設計し、生成することで、この問題に対処しようとします。
そこで, Fink, Reeves, Palma, Farr (2017) の言語, 胃科, 技術革新に関する業績に触発されて, 有限個の記号から生成された辞書から得られる「単語」の語彙が, 新たな記号発見にどのように影響するかを考察した。
複数の異なる辞書生成モデルを数値シミュレーションを用いて検討し,辞書生成器やパラメータとしての知識のスケーリングに着目し,記号の順序が現れる役割について検討した。
関連論文リスト
- ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers [1.6541870997607049]
変換器の高度な特徴抽出機能を備えた大規模言語モデルの非並列的文脈理解を融合したアーキテクチャであるARPAを提案する。
ARPAの導入は、視覚的単語の曖昧さにおいて重要なマイルストーンであり、魅力的なソリューションを提供する。
我々は研究者や実践者たちに、このようなハイブリッドモデルが人工知能の先例のない進歩を後押しする未来を想像して、我々のモデルの能力を探求するよう依頼する。
論文 参考訳(メタデータ) (2024-08-12T10:15:13Z) - Neural paraphrasing by automatically crawled and aligned sentence pairs [11.95795974003684]
ニューラルネットワークベースのパラフレーズ化に対する主な障害は、一致した文とパラフレーズのペアを持つ大きなデータセットの欠如である。
本稿では,ニュースサイトやブログサイトが,異なる物語スタイルを用いて同じ出来事を語るという仮定に基づいて,大規模コーパスの自動生成手法を提案する。
本稿では,言語制約のある類似性探索手法を提案する。これは,参照文が与えられた場合,数百万のインデックス付き文から最も類似した候補パラフレーズを見つけることができる。
論文 参考訳(メタデータ) (2024-02-16T10:40:38Z) - Probabilistic Transformer: A Probabilistic Dependency Model for
Contextual Word Representation [52.270712965271656]
本稿では,文脈表現の新しいモデルを提案する。
モデルのグラフは変換器に似ており、依存関係と自己意識の対応性がある。
実験により,本モデルが小型・中型データセットのトランスフォーマーと競合することを示す。
論文 参考訳(メタデータ) (2023-11-26T06:56:02Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
大規模言語モデルがどのように科学的合成、推論、説明を行うことができるかを示す。
我々は,この「知識」を科学的文献から合成することで,大きな言語モデルによって強化できることを示す。
このアプローチは、大きな言語モデルが機械学習システムの予測を説明することができるというさらなる利点を持っている。
論文 参考訳(メタデータ) (2023-10-12T02:17:59Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - Efficient Induction of Language Models Via Probabilistic Concept
Formation [13.632454840363916]
コーパスから言語モデルを取得するための新しいアプローチを提案する。
このフレームワークは、確率論的概念の分類学的階層を構築するための初期のシステムであるCobweb上に構築されている。
Cobwebの3つの新しい拡張(Word、Leaf、Pathの亜種)について調べる。
論文 参考訳(メタデータ) (2022-12-22T18:16:58Z) - Twist Decoding: Diverse Generators Guide Each Other [116.20780037268801]
様々なモデルの恩恵を受けながらテキストを生成するシンプルで一般的な推論アルゴリズムであるTwist decodingを導入する。
我々の方法は、語彙、トークン化、あるいは生成順序が共有されていると仮定しない。
論文 参考訳(メタデータ) (2022-05-19T01:27:53Z) - A Survey on Non-Autoregressive Generation for Neural Machine Translation
and Beyond [145.43029264191543]
非自己回帰(NAR)生成は推論を高速化するために機械翻訳(NMT)で最初に提案される。
NAR生成は機械翻訳を著しく加速させるが、自己回帰(AR)生成の推論は翻訳精度を犠牲にする。
NAR生成とAR生成の精度ギャップを埋めるために、多くの新しいモデルとアルゴリズムが設計/提案されている。
論文 参考訳(メタデータ) (2022-04-20T07:25:22Z) - Emergence of Machine Language: Towards Symbolic Intelligence with Neural
Networks [73.94290462239061]
本稿では、ニューラルネットワークを用いてシンボルとコネクショナリズムの原理を組み合わせることで、離散表現を導出することを提案する。
対話型環境とタスクを設計することにより、機械が自発的で柔軟でセマンティックな言語を生成できることを実証した。
論文 参考訳(メタデータ) (2022-01-14T14:54:58Z) - Decrypting Cryptic Crosswords: Semantically Complex Wordplay Puzzles as
a Target for NLP [5.447716844779342]
クリプティック・クロスワード(Cryptic crosswords)は、イギリスにおける英語を話すクロスワードである。
ベンチマークとして使用可能な暗号クロスワードヒントのデータセットを提示し,それらを解決するためにシーケンス・ツー・シーケンスモデルをトレーニングする。
新たなカリキュラム学習手法により,性能を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2021-04-17T18:54:00Z) - Neural Language Generation: Formulation, Methods, and Evaluation [13.62873478165553]
ニューラルネットワークに基づく生成モデリングの最近の進歩は、人間とシームレスに会話できるコンピュータシステムの実現への期待を再燃させた。
大規模データセットでトレーニングされた高容量ディープラーニングモデルは、明示的な監視信号の欠如にもかかわらず、データのパターンを学習する非並列的な能力を示している。
これらの生成モデルが生成するテキストの品質を評価する標準的な方法は存在しないため、フィールドの進行に深刻なボトルネックが生じる。
論文 参考訳(メタデータ) (2020-07-31T00:08:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。