論文の概要: A Survey of Knowledge Representation in Service Robotics
- arxiv url: http://arxiv.org/abs/1807.02192v4
- Date: Wed, 21 Jun 2023 18:33:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 18:34:46.695427
- Title: A Survey of Knowledge Representation in Service Robotics
- Title(参考訳): サービスロボティクスにおける知識表現に関する調査
- Authors: David Paulius and Yu Sun
- Abstract要約: 我々は、知識表現と、どのようにして知識が収集され、表現され、どのように再生され、問題を解決するかに焦点を当てる。
知識表現の定義に従って、そのような表現と有用な学習モデルの主な区別について議論する。
効果的な知識表現を設計する際に考慮すべき重要な原則について議論する。
- 参考スコア(独自算出の注目度): 10.220366465518262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within the realm of service robotics, researchers have placed a great amount
of effort into learning, understanding, and representing motions as
manipulations for task execution by robots. The task of robot learning and
problem-solving is very broad, as it integrates a variety of tasks such as
object detection, activity recognition, task/motion planning, localization,
knowledge representation and retrieval, and the intertwining of
perception/vision and machine learning techniques. In this paper, we solely
focus on knowledge representations and notably how knowledge is typically
gathered, represented, and reproduced to solve problems as done by researchers
in the past decades. In accordance with the definition of knowledge
representations, we discuss the key distinction between such representations
and useful learning models that have extensively been introduced and studied in
recent years, such as machine learning, deep learning, probabilistic modelling,
and semantic graphical structures. Along with an overview of such tools, we
discuss the problems which have existed in robot learning and how they have
been built and used as solutions, technologies or developments (if any) which
have contributed to solving them. Finally, we discuss key principles that
should be considered when designing an effective knowledge representation.
- Abstract(参考訳): サービスロボティクスの領域では、研究者たちはロボットによるタスク実行の操作として、動きの学習、理解、表現に多大な努力を払ってきた。
ロボットの学習と問題解決のタスクは、オブジェクト検出、アクティビティ認識、タスク/モーション計画、ローカライゼーション、知識表現と検索、知覚/ビジョンと機械学習技術の相互結合など、さまざまなタスクを統合しているため、非常に幅広い。
本稿では,知識表現,特に知識が一般に収集され,表現され,再現され,研究者が過去数十年に行なった問題を解決する方法についてのみ注目する。
知識表現の定義に従って,機械学習,ディープラーニング,確率的モデリング,意味的グラフィカル構造など,近年広く導入・研究されている,そのような表現と有用な学習モデルの主な違いについて論じる。
このようなツールの概要とともに、ロボット学習に存在した問題と、その解決に寄与したソリューション、技術、あるいは(もしあれば)開発としてどのように構築、利用されたかについて議論する。
最後に,効果的な知識表現を設計する際に考慮すべき重要な原則について議論する。
関連論文リスト
- A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
オブジェクト中心のロボット操作のための身体学習は、AIの急速に発展し、挑戦的な分野である。
データ駆動機械学習とは異なり、具体化学習は環境との物理的相互作用を通じてロボット学習に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-21T11:32:09Z) - Visual Knowledge in the Big Model Era: Retrospect and Prospect [63.282425615863]
視覚知識は、視覚概念とその関係を簡潔で包括的で解釈可能な方法でカプセル化できる新しい知識表現である。
視覚世界に関する知識は、人間の認知と知性にとって欠かせない要素として認識されているため、視覚知識は、機械知性を確立する上で重要な役割を担っていると考えられる。
論文 参考訳(メタデータ) (2024-04-05T07:31:24Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Machine learning and deep learning [0.0]
機械学習は、問題固有のトレーニングデータから学習するシステムの能力を記述する。
ディープラーニングは、人工ニューラルネットワークに基づく機械学習の概念である。
論文 参考訳(メタデータ) (2021-04-12T09:54:12Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Knowledge Representations in Technical Systems -- A Taxonomy [4.807347156077899]
システムが期待通りに機能するためには、知識の正確な表現が不可欠である。
本稿では,様々な知識表現技術と,人工知能の様々な問題領域への分類について考察する。
論文 参考訳(メタデータ) (2020-01-14T15:00:09Z) - A Review on Intelligent Object Perception Methods Combining
Knowledge-based Reasoning and Machine Learning [60.335974351919816]
物体知覚はコンピュータビジョンの基本的なサブフィールドである。
最近の研究は、物体の視覚的解釈のインテリジェンスレベルを拡大するために、知識工学を統合する方法を模索している。
論文 参考訳(メタデータ) (2019-12-26T13:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。