論文の概要: Machine learning and deep learning
- arxiv url: http://arxiv.org/abs/2104.05314v2
- Date: Wed, 14 Apr 2021 10:31:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 12:53:15.954856
- Title: Machine learning and deep learning
- Title(参考訳): 機械学習とディープラーニング
- Authors: Christian Janiesch, Patrick Zschech, Kai Heinrich
- Abstract要約: 機械学習は、問題固有のトレーニングデータから学習するシステムの能力を記述する。
ディープラーニングは、人工ニューラルネットワークに基づく機械学習の概念である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today, intelligent systems that offer artificial intelligence capabilities
often rely on machine learning. Machine learning describes the capacity of
systems to learn from problem-specific training data to automate the process of
analytical model building and solve associated tasks. Deep learning is a
machine learning concept based on artificial neural networks. For many
applications, deep learning models outperform shallow machine learning models
and traditional data analysis approaches. In this article, we summarize the
fundamentals of machine learning and deep learning to generate a broader
understanding of the methodical underpinning of current intelligent systems. In
particular, we provide a conceptual distinction between relevant terms and
concepts, explain the process of automated analytical model building through
machine learning and deep learning, and discuss the challenges that arise when
implementing such intelligent systems in the field of electronic markets and
networked business. These naturally go beyond technological aspects and
highlight issues in human-machine interaction and artificial intelligence
servitization.
- Abstract(参考訳): 今日、人工知能機能を提供するインテリジェントシステムは、しばしば機械学習に依存している。
機械学習は、問題固有のトレーニングデータから学習し、分析モデルの構築と関連するタスクのプロセスを自動化するシステムの能力を記述する。
ディープラーニングは、ニューラルネットワークに基づく機械学習の概念である。
多くのアプリケーションにおいて、ディープラーニングモデルは浅い機械学習モデルや従来のデータ分析アプローチよりも優れている。
本稿では,機械学習とディープラーニングの基礎を要約し,現在の知的システムの体系的基盤に関するより広範な理解を生み出す。
特に、関連する用語と概念を概念的に区別し、機械学習とディープラーニングによる自動分析モデル構築のプロセスを説明し、電子市場やネットワークビジネスの分野においてこのようなインテリジェントなシステムを実装する際に生じる課題について議論する。
これらは自然に技術的側面を超えて、人間と機械の相互作用と人工知能のキャビテーションの問題を浮き彫りにする。
関連論文リスト
- Coupling Machine Learning with Ontology for Robotics Applications [0.0]
動的シナリオにおける事前知識の可用性の欠如は、間違いなくスケーラブルなマシンインテリジェンスにとって大きな障壁である。
二つの階層間の相互作用についての私の見解は、知識が知識ベース層で容易に利用できない場合、他の階層からより多くの知識を抽出できるという考えに基づいている。
論文 参考訳(メタデータ) (2024-06-08T23:38:03Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems [4.936180840622583]
人間は現在、機械学習ベースのシステムと常に対話し、毎日モデルをトレーニングし、使用しています。
コンピュータサイエンス文学におけるいくつかの異なる技術は、人間の機械学習システムとの相互作用を説明するが、その分類は小さく、目的は様々である。
本調査では,現代コンピュータ科学文献が人間と機械の相互作用をどのようにモデル化しているかを理解するための概念的および技術的枠組みを提供するハイブリッド意思決定システムの分類法を提案する。
論文 参考訳(メタデータ) (2024-02-09T09:54:01Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Evaluating explainability for machine learning predictions using
model-agnostic metrics [0.0]
本稿では,その特徴からAIモデル予測が容易に説明できる程度を定量化する新しい指標を提案する。
我々のメトリクスは、説明可能性の異なる側面をスカラーに要約し、モデル予測のより包括的な理解を提供する。
論文 参考訳(メタデータ) (2023-02-23T15:28:36Z) - A Roadmap to Domain Knowledge Integration in Machine Learning [21.96548398967003]
機械学習モデルに知識を統合することは、これらの障害をある程度克服するのに役立ちます。
機械学習タスクにおけるこれらの様々な知識の統合とそれらのパフォーマンスについて、簡単な概要を述べます。
論文 参考訳(メタデータ) (2022-12-12T05:35:44Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。