A Survey of Knowledge Representation in Service Robotics
- URL: http://arxiv.org/abs/1807.02192v4
- Date: Wed, 21 Jun 2023 18:33:48 GMT
- Title: A Survey of Knowledge Representation in Service Robotics
- Authors: David Paulius and Yu Sun
- Abstract summary: We focus on knowledge representations and how knowledge is typically gathered, represented, and reproduced to solve problems.
In accordance with the definition of knowledge representations, we discuss the key distinction between such representations and useful learning models.
We discuss key principles that should be considered when designing an effective knowledge representation.
- Score: 10.220366465518262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within the realm of service robotics, researchers have placed a great amount
of effort into learning, understanding, and representing motions as
manipulations for task execution by robots. The task of robot learning and
problem-solving is very broad, as it integrates a variety of tasks such as
object detection, activity recognition, task/motion planning, localization,
knowledge representation and retrieval, and the intertwining of
perception/vision and machine learning techniques. In this paper, we solely
focus on knowledge representations and notably how knowledge is typically
gathered, represented, and reproduced to solve problems as done by researchers
in the past decades. In accordance with the definition of knowledge
representations, we discuss the key distinction between such representations
and useful learning models that have extensively been introduced and studied in
recent years, such as machine learning, deep learning, probabilistic modelling,
and semantic graphical structures. Along with an overview of such tools, we
discuss the problems which have existed in robot learning and how they have
been built and used as solutions, technologies or developments (if any) which
have contributed to solving them. Finally, we discuss key principles that
should be considered when designing an effective knowledge representation.
Related papers
- A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in AI.
Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment.
arXiv Detail & Related papers (2024-08-21T11:32:09Z) - Visual Knowledge in the Big Model Era: Retrospect and Prospect [63.282425615863]
Visual knowledge is a new form of knowledge representation that can encapsulate visual concepts and their relations in a succinct, comprehensive, and interpretable manner.
As the knowledge about the visual world has been identified as an indispensable component of human cognition and intelligence, visual knowledge is poised to have a pivotal role in establishing machine intelligence.
arXiv Detail & Related papers (2024-04-05T07:31:24Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
Article argues that embodied intelligence is a key driver for the advancement of machine learning technology.
We highlight challenges and opportunities specific to embodied intelligence.
We propose research directions which may significantly advance the state-of-the-art in robot learning.
arXiv Detail & Related papers (2021-10-28T16:04:01Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Machine learning and deep learning [0.0]
Machine learning describes the capacity of systems to learn from problem-specific training data.
Deep learning is a machine learning concept based on artificial neural networks.
arXiv Detail & Related papers (2021-04-12T09:54:12Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Knowledge Representations in Technical Systems -- A Taxonomy [4.807347156077899]
An accurate representation of knowledge is essential for the system to work as expected.
This article mainly gives insight into different knowledge representation techniques and their categorization into various problem domains in artificial intelligence.
arXiv Detail & Related papers (2020-01-14T15:00:09Z) - A Review on Intelligent Object Perception Methods Combining
Knowledge-based Reasoning and Machine Learning [60.335974351919816]
Object perception is a fundamental sub-field of Computer Vision.
Recent works seek ways to integrate knowledge engineering in order to expand the level of intelligence of the visual interpretation of objects.
arXiv Detail & Related papers (2019-12-26T13:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.