論文の概要: The Multi-Agent Reinforcement Learning in MalmÖ (MARLÖ) Competition
- arxiv url: http://arxiv.org/abs/1901.08129v2
- Date: Fri, 11 Apr 2025 11:14:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:16:30.346202
- Title: The Multi-Agent Reinforcement Learning in MalmÖ (MARLÖ) Competition
- Title(参考訳): マルメコンペティションにおけるマルチエージェント強化学習
- Authors: Diego Perez-Liebana, Katja Hofmann, Sharada Prasanna Mohanty, Noboru Kuno, Andre Kramer, Sam Devlin, Raluca D. Gaina, Daniel Ionita,
- Abstract要約: The Multi-Agent Reinforcement Learning in Malm"O (MARL"O) competition is a new challenge that proposes research in this domain using multiple 3D games。
このコンテストの目的は、様々なゲームや対戦相手を学習できる一般エージェントの研究を促進することである。
- 参考スコア(独自算出の注目度): 14.726566410348985
- License:
- Abstract: Learning in multi-agent scenarios is a fruitful research direction, but current approaches still show scalability problems in multiple games with general reward settings and different opponent types. The Multi-Agent Reinforcement Learning in Malm\"O (MARL\"O) competition is a new challenge that proposes research in this domain using multiple 3D games. The goal of this contest is to foster research in general agents that can learn across different games and opponent types, proposing a challenge as a milestone in the direction of Artificial General Intelligence.
- Abstract(参考訳): マルチエージェントシナリオでの学習は実りある研究の方向性であるが、現在のアプローチは一般的な報酬設定と異なる対戦型を持つ複数のゲームにおいてスケーラビリティの問題を示している。
The Multi-Agent Reinforcement Learning in Malm\O (MARL\"O) competition is a new challenge that proposes research in this domain using multiple 3D games。
このコンテストの目的は、さまざまなゲームや対戦型を学習できる汎用エージェントの研究を促進することであり、人工知能の方向性のマイルストーンとして挑戦を提案することである。
関連論文リスト
- FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning [25.857375787748715]
我々は、リアルタイムの格闘ゲームプラットフォームであるFightLadderを紹介し、競争力のあるMARL研究を促進する。
競争ゲームのための最先端のMARLアルゴリズムの実装と評価指標のセットを提供する。
シングルプレイヤーモードで12文字を連続的に打ち破る汎用エージェントを訓練することにより,このプラットフォームの実現可能性を示す。
論文 参考訳(メタデータ) (2024-06-04T08:04:23Z) - Benchmarking Robustness and Generalization in Multi-Agent Systems: A
Case Study on Neural MMO [50.58083807719749]
IJCAI 2022で開催されている第2回Neural MMOチャレンジの結果を報告する。
この競合はマルチエージェントシステムの堅牢性と一般化をターゲットにしている。
環境ラッパー、ベースライン、可視化ツール、そしてさらなる研究のための選択されたポリシーを含むベンチマークをオープンソースにします。
論文 参考訳(メタデータ) (2023-08-30T07:16:11Z) - Mimicking To Dominate: Imitation Learning Strategies for Success in
Multiagent Competitive Games [13.060023718506917]
我々は、対戦者の次の動きを予測するための新しいマルチエージェント模倣学習モデルを開発する。
また、模倣学習モデルとポリシートレーニングを組み合わせた、新しいマルチエージェント強化学習アルゴリズムを1つのトレーニングプロセスに導入する。
実験結果から,本手法は既存のマルチエージェントRLアルゴリズムと比較して性能が優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-20T07:30:13Z) - Centralized control for multi-agent RL in a complex Real-Time-Strategy
game [0.0]
マルチエージェント強化学習(MARL)は、共有環境で共存する複数の学習エージェントの行動を研究する。
MARLはシングルエージェントRLよりも難しい。
このプロジェクトは、Lux AI v2 KaggleコンペティションにRLを適用したエンドツーエンドエクスペリエンスを提供する。
論文 参考訳(メタデータ) (2023-04-25T17:19:05Z) - TiZero: Mastering Multi-Agent Football with Curriculum Learning and
Self-Play [19.98100026335148]
TiZeroは、スクラッチから学習する自己進化型マルチエージェントシステムである。
これは、Google Research Footballの環境において、これまでのシステムよりはるかに優れている。
論文 参考訳(メタデータ) (2023-02-15T08:19:18Z) - Retrospective on the 2021 BASALT Competition on Learning from Human
Feedback [92.37243979045817]
競争の目的は、人間のフィードバック(LfHF)技術から学び、オープンワールドの課題を解決するエージェントへの研究を促進することであった。
LfHF技術の使用を義務付けるのではなく、ビデオゲームMinecraftで達成すべき自然言語の4つのタスクについて説明した。
チームは、様々な可能な人間のフィードバックタイプにまたがる多様なLfHFアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-04-14T17:24:54Z) - Cooperative Exploration for Multi-Agent Deep Reinforcement Learning [127.4746863307944]
深層強化学習のための協調型マルチエージェント探索(CMAE)を提案する。
ゴールは正規化エントロピーに基づく手法により、複数の射影状態空間から選択される。
CMAEが様々なタスクのベースラインを一貫して上回っていることを実証する。
論文 参考訳(メタデータ) (2021-07-23T20:06:32Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
強化学習(Reinforcement Learning, RL)は、目標指向のポリシーを学習するためのフレームワークである。
本稿では,RLエージェントが経験した驚きの量と競合する2つのポリシーを相殺する対戦ゲームに基づく,新しい教師なしRL手法を提案する。
本手法は, 明確な相転移を示すことによって, 複雑なスキルの出現につながることを示す。
論文 参考訳(メタデータ) (2021-07-12T17:58:40Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - "It's Unwieldy and It Takes a Lot of Time." Challenges and Opportunities
for Creating Agents in Commercial Games [20.63320049616144]
対戦相手、ノンプレイヤーキャラクター、チームメイトなどのゲームエージェントは、現代の多くのゲームにおいてプレイヤーの経験の中心となっている。
ゲーム産業で使用されるAI技術の展望がより広く機械学習(ML)を採用するように進化するにつれて、研究コミュニティは数十年にわたって業界内で栽培されているベストプラクティスからエージェントを作成することを学ぶことが不可欠である。
AAAスタジオ、インディースタジオ、産業研究所の17人のゲームエージェントクリエーターに、彼らがプロフェッショナル文学で経験した課題についてインタビューした。
論文 参考訳(メタデータ) (2020-09-01T16:21:19Z) - Neural MMO v1.3: A Massively Multiagent Game Environment for Training
and Evaluating Neural Networks [48.5733173329785]
本稿では,MMOにインスパイアされたマルチエージェントゲーム環境であるNeural MMOを紹介する。
分散インフラストラクチャとゲームIOという,AI研究のためのマルチエージェントシステムエンジニアリングにおける,より一般的な2つの課題について論じる。
論文 参考訳(メタデータ) (2020-01-31T18:50:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。