The Multi-Agent Reinforcement Learning in MalmÖ (MARLÖ) Competition
- URL: http://arxiv.org/abs/1901.08129v2
- Date: Fri, 11 Apr 2025 11:14:27 GMT
- Title: The Multi-Agent Reinforcement Learning in MalmÖ (MARLÖ) Competition
- Authors: Diego Perez-Liebana, Katja Hofmann, Sharada Prasanna Mohanty, Noboru Kuno, Andre Kramer, Sam Devlin, Raluca D. Gaina, Daniel Ionita,
- Abstract summary: The Multi-Agent Reinforcement Learning in Malm"O (MARL"O) competition is a new challenge that proposes research in this domain using multiple 3D games.<n>The goal of this contest is to foster research in general agents that can learn across different games and opponent types.
- Score: 14.726566410348985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning in multi-agent scenarios is a fruitful research direction, but current approaches still show scalability problems in multiple games with general reward settings and different opponent types. The Multi-Agent Reinforcement Learning in Malm\"O (MARL\"O) competition is a new challenge that proposes research in this domain using multiple 3D games. The goal of this contest is to foster research in general agents that can learn across different games and opponent types, proposing a challenge as a milestone in the direction of Artificial General Intelligence.
Related papers
- FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning [25.857375787748715]
We present FightLadder, a real-time fighting game platform, to empower competitive MARL research.
We provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics.
We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode.
arXiv Detail & Related papers (2024-06-04T08:04:23Z) - ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic
Decision-Making with AI Agents [77.34720446306419]
Alympics is a systematic simulation framework utilizing Large Language Model (LLM) agents for game theory research.
Alympics creates a versatile platform for studying complex game theory problems.
arXiv Detail & Related papers (2023-11-06T16:03:46Z) - Benchmarking Robustness and Generalization in Multi-Agent Systems: A
Case Study on Neural MMO [50.58083807719749]
We present the results of the second Neural MMO challenge, hosted at IJCAI 2022, which received 1600+ submissions.
This competition targets robustness and generalization in multi-agent systems.
We will open-source our benchmark including the environment wrapper, baselines, a visualization tool, and selected policies for further research.
arXiv Detail & Related papers (2023-08-30T07:16:11Z) - Mimicking To Dominate: Imitation Learning Strategies for Success in
Multiagent Competitive Games [13.060023718506917]
We develop a new multi-agent imitation learning model for predicting next moves of the opponents.
We also present a new multi-agent reinforcement learning algorithm that combines our imitation learning model and policy training into one single training process.
Experimental results show that our approach achieves superior performance compared to existing state-of-the-art multi-agent RL algorithms.
arXiv Detail & Related papers (2023-08-20T07:30:13Z) - Centralized control for multi-agent RL in a complex Real-Time-Strategy
game [0.0]
Multi-agent Reinforcement learning (MARL) studies the behaviour of multiple learning agents that coexist in a shared environment.
MARL is more challenging than single-agent RL because it involves more complex learning dynamics.
This project provides the end-to-end experience of applying RL in the Lux AI v2 Kaggle competition.
arXiv Detail & Related papers (2023-04-25T17:19:05Z) - TiZero: Mastering Multi-Agent Football with Curriculum Learning and
Self-Play [19.98100026335148]
TiZero is a self-evolving, multi-agent system that learns from scratch.
It outperforms previous systems by a large margin on the Google Research Football environment.
arXiv Detail & Related papers (2023-02-15T08:19:18Z) - Retrospective on the 2021 BASALT Competition on Learning from Human
Feedback [92.37243979045817]
The goal of the competition was to promote research towards agents that use learning from human feedback (LfHF) techniques to solve open-world tasks.
Rather than mandating the use of LfHF techniques, we described four tasks in natural language to be accomplished in the video game Minecraft.
Teams developed a diverse range of LfHF algorithms across a variety of possible human feedback types.
arXiv Detail & Related papers (2022-04-14T17:24:54Z) - Cooperative Exploration for Multi-Agent Deep Reinforcement Learning [127.4746863307944]
We propose cooperative multi-agent exploration (CMAE) for deep reinforcement learning.
The goal is selected from multiple projected state spaces via a normalized entropy-based technique.
We demonstrate that CMAE consistently outperforms baselines on various tasks.
arXiv Detail & Related papers (2021-07-23T20:06:32Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
We propose Portfolio Monte Carlo Tree Search with Progressive Unpruning for playing a turn-based strategy game (Tribes)
We show how it can be parameterized so a quality-diversity algorithm (MAP-Elites) is used to achieve different play-styles while keeping a competitive level of play.
Our results show that this algorithm is capable of achieving these goals even for an extensive collection of game levels beyond those used for training.
arXiv Detail & Related papers (2021-04-17T20:33:24Z) - "It's Unwieldy and It Takes a Lot of Time." Challenges and Opportunities
for Creating Agents in Commercial Games [20.63320049616144]
Game agents such as opponents, non-player characters, and teammates are central to player experiences in many modern games.
As the landscape of AI techniques used in the games industry evolves to adopt machine learning (ML) more widely, it is vital that the research community learn from the best practices cultivated within the industry over decades creating agents.
We interviewed seventeen game agent creators from AAA studios, indie studios, and industrial research labs about the challenges they experienced with their professional literature.
arXiv Detail & Related papers (2020-09-01T16:21:19Z) - Neural MMO v1.3: A Massively Multiagent Game Environment for Training
and Evaluating Neural Networks [48.5733173329785]
We present Neural MMO, a massively multiagent game environment inspired by MMOs.
We discuss our progress on two more general challenges in multiagent systems engineering for AI research: distributed infrastructure and game IO.
arXiv Detail & Related papers (2020-01-31T18:50:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.