論文の概要: On Binscatter
- arxiv url: http://arxiv.org/abs/1902.09608v4
- Date: Sun, 12 Nov 2023 21:17:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 00:59:24.162706
- Title: On Binscatter
- Title(参考訳): Binscatterについて
- Authors: Matias D. Cattaneo, Richard K. Crump, Max H. Farrell, Yingjie Feng
- Abstract要約: 本研究では,本手法の特性を公式に研究し,拡張された可視化・エコノメトリ・ビンスキャッタツールを開発した。
Python、R、Staの汎用ソフトウェアが提供されている。
- 参考スコア(独自算出の注目度): 0.8739101659113157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binscatter is a popular method for visualizing bivariate relationships and
conducting informal specification testing. We study the properties of this
method formally and develop enhanced visualization and econometric binscatter
tools. These include estimating conditional means with optimal binning and
quantifying uncertainty. We also highlight a methodological problem related to
covariate adjustment that can yield incorrect conclusions. We revisit two
applications using our methodology and find substantially different results
relative to those obtained using prior informal binscatter methods. General
purpose software in Python, R, and Stata is provided. Our technical work is of
independent interest for the nonparametric partition-based estimation
literature.
- Abstract(参考訳): Binscatterは、二変量関係を可視化し、非公式な仕様テストを実行する一般的な方法である。
本手法の特性を形式的に検討し,可視化・計量用ビンスキャッタツールの開発を行った。
条件付き手段を最適バイニングで推定し、不確実性を定量化する。
また,不正確な結論をもたらす共変量調整に関する方法論的問題にも注目する。
提案手法を用いて2つのアプリケーションを再検討し, 従来の非公式なbinscatter法と比較して, かなり異なる結果を得た。
Python、R、Staの汎用ソフトウェアが提供されている。
我々の技術は非パラメトリック分割に基づく推定文献に独立した関心を持っている。
関連論文リスト
- Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
オンライン報酬指標の偏りのないオフライン推定を最適化する意思決定ポリシーを学習することを目指している。
学習シナリオにおける同値性に基づく単一のフレームワークを提案する。
我々のフレームワークは、分散最適非バイアス推定器の特徴付けを可能にし、それに対する閉形式解を提供する。
論文 参考訳(メタデータ) (2024-05-09T12:52:22Z) - Estimating Barycenters of Distributions with Neural Optimal Transport [93.28746685008093]
本稿では,Wasserstein Barycenter問題を解くための新しいスケーラブルなアプローチを提案する。
我々の手法は最近のNeural OTソルバをベースとしている。
また,提案手法の理論的誤差境界も確立する。
論文 参考訳(メタデータ) (2024-02-06T09:17:07Z) - Positive definite nonparametric regression using an evolutionary
algorithm with application to covariance function estimation [0.0]
定常過程の共分散関数を推定するための新しい非パラメトリック回帰フレームワークを提案する。
提案手法は, 正定性, 等方性, 単調性を推定者に課すことができる。
提案手法は,長距離依存に対する信頼性の高い推定値を提供する。
論文 参考訳(メタデータ) (2023-04-25T22:01:14Z) - Quantile Off-Policy Evaluation via Deep Conditional Generative Learning [21.448553360543478]
Off-Policy Evaluation (OPE) は、潜在的に異なる行動ポリシーによって生成されたオフラインデータを用いて、新しいターゲットポリシーを評価することに関心がある。
本稿では、逐次決定における量子OPEの2倍のロス率推論手順を提案する。
本提案手法の利点は,シミュレーションと,ショートビデオプラットフォームによる実世界のデータセットの両方を用いて示す。
論文 参考訳(メタデータ) (2022-12-29T22:01:43Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Weight-of-evidence 2.0 with shrinkage and spline-binning [3.925373521409752]
分類予測器を変換するための形式化、データ駆動、強力な方法を提案する。
我々は,重み付け手法を拡張し,縮尺推定器を用いて比例を推定することを提案する。
本稿では,提案手法の有効性を示す詐欺検出セットにおける一連の実験結果を示す。
論文 参考訳(メタデータ) (2021-01-05T13:13:16Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
多変量回帰問題に対する新しい非パラメトリック混合実験モデルを提案する。
条件付きモデルを用いて、サンプル外入力の予測は、観測された各データポイントと類似性に基づいて行われる。
混合物のパラメータと距離測定値に基づいて後部推論を行う。
論文 参考訳(メタデータ) (2020-12-03T18:08:30Z) - Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data [15.27393561231633]
不均一な治療効果を推定するための2段半パラメトリック差分差分推定器を提案する。
第1段階では、確率スコアを推定するために、一般的な機械学習手法が使用できる。
第2段階ではパラメトリックパラメータと未知関数の両方の収束率を導出する。
論文 参考訳(メタデータ) (2020-09-07T15:14:29Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。