論文の概要: Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data
- arxiv url: http://arxiv.org/abs/2009.03151v1
- Date: Mon, 7 Sep 2020 15:14:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 03:13:53.100249
- Title: Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data
- Title(参考訳): 高次元データを用いた二重ロバスト半パラメトリック差分推定器
- Authors: Yang Ning and Sida Peng and Jing Tao
- Abstract要約: 不均一な治療効果を推定するための2段半パラメトリック差分差分推定器を提案する。
第1段階では、確率スコアを推定するために、一般的な機械学習手法が使用できる。
第2段階ではパラメトリックパラメータと未知関数の両方の収束率を導出する。
- 参考スコア(独自算出の注目度): 15.27393561231633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a doubly robust two-stage semiparametric
difference-in-difference estimator for estimating heterogeneous treatment
effects with high-dimensional data. Our new estimator is robust to model
miss-specifications and allows for, but does not require, many more regressors
than observations. The first stage allows a general set of machine learning
methods to be used to estimate the propensity score. In the second stage, we
derive the rates of convergence for both the parametric parameter and the
unknown function under a partially linear specification for the outcome
equation. We also provide bias correction procedures to allow for valid
inference for the heterogeneous treatment effects. We evaluate the finite
sample performance with extensive simulation studies. Additionally, a real data
analysis on the effect of Fair Minimum Wage Act on the unemployment rate is
performed as an illustration of our method. An R package for implementing the
proposed method is available on Github.
- Abstract(参考訳): 本稿では,二次元データを用いて不均質な処理効果を推定するための2段階半パラメトリック差分推定器を提案する。
我々の新しい推定器はミスの特定をモデル化するのに堅牢であり、観測よりも多くの回帰器を必要としない。
第1段階では、確率スコアを推定するために、一般的な機械学習手法が使用できる。
第2段階では、パラメトリックパラメータと未知関数の両方に対する収束率を、結果方程式の部分的に線形な仕様の下で導出する。
また,不均質な治療効果の正当な推論を可能にするためのバイアス補正手順も提供する。
有限サンプル性能を広範囲なシミュレーションにより評価する。
また, 失業率に対する公正な最小賃金法の効果に関する実データ分析を, 本手法の例証として行った。
提案手法を実装するためのRパッケージがGithubで公開されている。
関連論文リスト
- Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
負の制御結果を用いて遅延不均一性を調整する頑健なポストインテグレート推論(PII)手法を提案する。
提案手法は,予測された直接効果推定値,隠された仲介者,共同設立者,モデレーターまで拡張する。
提案された二重頑健な推定器は、最小の仮定と潜在的な不特定性の下で一貫性があり、効率的である。
論文 参考訳(メタデータ) (2024-10-07T12:52:38Z) - Estimation and Inference for Causal Functions with Multiway Clustered Data [6.988496457312806]
本稿では,一般的な因果関数のクラスに対する推定法と一様推論法を提案する。
因果関数は、調整された(Neyman-orthogonal)信号の条件付き期待値として同定される。
提案手法をアフリカにおける水準と歴史的奴隷貿易の因果関係の分析に適用する。
論文 参考訳(メタデータ) (2024-09-10T17:17:53Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Semi-Supervised Quantile Estimation: Robust and Efficient Inference in High Dimensional Settings [0.5735035463793009]
2つの利用可能なデータセットを特徴とする半教師付き環境での量子推定を考察する。
本稿では,2つのデータセットに基づいて,応答量子化(s)に対する半教師付き推定器群を提案する。
論文 参考訳(メタデータ) (2022-01-25T10:02:23Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
機械学習におけるブラックボックスモデルは、複雑な問題と高次元設定において優れた予測性能を示した。
透明性と解釈可能性の欠如は、重要な意思決定プロセスにおけるそのようなモデルの適用性を制限します。
半パラメトリック統計学のアイデアを用いて予測モデルにおける解釈可能性と性能のトレードオフを行う新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-08T16:38:15Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。