From interpretability to inference: an estimation framework for universal approximators
- URL: http://arxiv.org/abs/1903.04209v6
- Date: Thu, 05 Dec 2024 16:32:37 GMT
- Title: From interpretability to inference: an estimation framework for universal approximators
- Authors: Andreas Joseph,
- Abstract summary: We present a novel framework for estimation and inference with the broad class of universal approximators.
Inference relies on analyzing the bias and variance properties of individual Shapley components.
- Score: 0.0
- License:
- Abstract: We present a novel framework for estimation and inference with the broad class of universal approximators. Estimation is based on the decomposition of model predictions into Shapley values. Inference relies on analyzing the bias and variance properties of individual Shapley components. We show that Shapley value estimation is asymptotically unbiased, and we introduce Shapley regressions as a tool to uncover the true data generating process from noisy data alone. The well-known case of the linear regression is the special case in our framework if the model is linear in parameters. We present theoretical, numerical, and empirical results for the estimation of heterogeneous treatment effects as our guiding example.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - On Model Extrapolation in Marginal Shapley Values [0.0]
One of the most popular methods for model explainability is based on Shapley values.
marginal approach to calculating Shapley values leads to model extrapolation where it might not be well defined.
We propose an approach which while using marginal averaging avoids model extrapolation and with addition of causal information replicates causal Shapley values.
arXiv Detail & Related papers (2024-12-17T18:33:14Z) - Asymptotics of Linear Regression with Linearly Dependent Data [28.005935031887038]
We study the computations of linear regression in settings with non-Gaussian covariates.
We show how dependencies influence estimation error and the choice of regularization parameters.
arXiv Detail & Related papers (2024-12-04T20:31:47Z) - Progression: an extrapolation principle for regression [0.0]
We propose a novel statistical extrapolation principle.
It assumes a simple relationship between predictors and the response at the boundary of the training predictor samples.
Our semi-parametric method, progression, leverages this extrapolation principle and offers guarantees on the approximation error beyond the training data range.
arXiv Detail & Related papers (2024-10-30T17:29:51Z) - High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile [0.0]
We study the predictive risk of the ridge estimator for linear regression with a variance profile.
For certain class of variance profile, our work highlights the emergence of the well-known double descent phenomenon.
We also investigate the similarities and differences that exist with the standard setting of independent and identically distributed data.
arXiv Detail & Related papers (2024-03-29T14:24:49Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
We develop neural models that possess an interpretable inference process for dependency parsing.
Our models adopt instance-based inference, where dependency edges are extracted and labeled by comparing them to edges in a training set.
arXiv Detail & Related papers (2021-09-28T05:30:52Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Performance of Bayesian linear regression in a model with mismatch [8.60118148262922]
We analyze the performance of an estimator given by the mean of a log-concave Bayesian posterior distribution with gaussian prior.
This inference model can be rephrased as a version of the Gardner model in spin glasses.
arXiv Detail & Related papers (2021-07-14T18:50:13Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.