論文の概要: Efficient and Robust Registration on the 3D Special Euclidean Group
- arxiv url: http://arxiv.org/abs/1904.05519v3
- Date: Fri, 22 Nov 2024 22:57:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-01 04:14:28.900076
- Title: Efficient and Robust Registration on the 3D Special Euclidean Group
- Title(参考訳): 3次元特殊ユークリッド群の効率的なロバスト登録
- Authors: Uttaran Bhattacharya, Venu Madhav Govindu,
- Abstract要約: 高精度で頑健で高速な3Dスキャンの登録方法を提案する。
リー群の幾何学的性質と、反復的に再重み付けされた最小二乗最適化によって得られるロバスト性を利用する。
- 参考スコア(独自算出の注目度): 11.805432720871263
- License:
- Abstract: We present an accurate, robust and fast method for registration of 3D scans. Our motion estimation optimizes a robust cost function on the intrinsic representation of rigid motions, i.e., the Special Euclidean group $\mathbb{SE}(3)$. We exploit the geometric properties of Lie groups as well as the robustness afforded by an iteratively reweighted least squares optimization. We also generalize our approach to a joint multiview method that simultaneously solves for the registration of a set of scans. We demonstrate the efficacy of our approach by thorough experimental validation. Our approach significantly outperforms the state-of-the-art robust 3D registration method based on a line process in terms of both speed and accuracy. We also show that this line process method is a special case of our principled geometric solution. Finally, we also present scenarios where global registration based on feature correspondences fails but multiview ICP based on our robust motion estimation is successful.
- Abstract(参考訳): 高精度で頑健で高速な3Dスキャンの登録方法を提案する。
我々の運動推定は、厳密な運動の本質的な表現、すなわち特殊ユークリッド群 $\mathbb{SE}(3)$ 上のロバストなコスト関数を最適化する。
リー群の幾何学的性質と、反復的に再重み付けされた最小二乗最適化によって得られるロバスト性を利用する。
また,一組のスキャンの登録を同時に行うジョイント・マルチビュー法へのアプローチを一般化する。
本手法の有効性を実験的に検証し,本手法の有効性を実証する。
提案手法は, 速度と精度の両面から, ラインプロセスに基づいて, 最先端の頑健な3次元レジストレーション法を著しく上回っている。
また, この直線過程法は, 原理的幾何解の特別な場合であることを示す。
最後に、特徴対応に基づくグローバルな登録が失敗するシナリオも提示するが、頑健な動き推定に基づくマルチビューICPは成功している。
関連論文リスト
- DynaWeightPnP: Toward global real-time 3D-2D solver in PnP without correspondences [7.191124861153032]
本稿では,3次元形状と2次元形状をリアルタイムに整列する最適なポーズを,対応なしに推定する,特別な視点-n-Point(ウェイト)問題に対処する。
血管内画像ガイド下インターベンションにおける3D-2D中心ライン登録作業の典型的な例について実験を行った。
その結果,提案アルゴリズムは60Hz/31Hzの登録処理速度を既存手法に匹敵する競争精度で達成することを確認した。
論文 参考訳(メタデータ) (2024-09-27T05:31:33Z) - Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation [68.75387874066647]
本研究では3次元ポーズ推定のための不確実性認識テスト時間最適化フレームワークを提案する。
我々のアプローチは、Human3.6Mの4.5%という大きなマージンで、過去最高の結果を上回っている。
論文 参考訳(メタデータ) (2024-02-04T04:28:02Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - GraphReg: Dynamical Point Cloud Registration with Geometry-aware Graph
Signal Processing [0.0]
本研究では,3次元点雲登録のための高精度,効率的,物理的に誘導された手法を提案する。
我々は、粒子(点)の動きを制御し、より正確で頑健な登録を実現するために、幾何学を意識した剛体力学を探求する。
その結果,提案手法は精度において最先端の手法よりも優れており,大規模点雲の登録に適していることがわかった。
論文 参考訳(メタデータ) (2023-02-02T14:06:46Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
我々は、点雲上に定義された学習関数に関する地図を同期させることにより、複数の非剛体形状を登録する新しい方法であるSyNoRiMを提案する。
提案手法は,登録精度において最先端の性能を達成できることを実証する。
論文 参考訳(メタデータ) (2021-11-25T02:37:59Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - Boosting RANSAC via Dual Principal Component Pursuit [24.942079487458624]
本稿では,強力な理論的支援と効率的なアルゴリズムを備えた頑健な部分空間学習手法としてDual principal Component Pursuit (DPCP)を紹介した。
2次元ホモグラフ、基本行列、基本行列、および3次元ホモグラフテンソルの推定実験は、我々のアプローチが最先端の代替よりも一貫して精度が高いことを示している。
論文 参考訳(メタデータ) (2021-10-06T17:04:45Z) - Fast and Robust Certifiable Estimation of the Relative Pose Between Two
Calibrated Cameras [0.0]
カメラの相対Pose問題(RPp)は、2つのカメラ間のペアワイズ回転のセットを与えられた相対方向変換(構成)を目指しています。
本稿では,検出された最適解の比率を高めるための証明書群について紹介する。
提案手法が高速でロバストなポーズ推定を実現することを,合成および実データにより証明する。
論文 参考訳(メタデータ) (2021-01-21T10:07:05Z) - Canny-VO: Visual Odometry with RGB-D Cameras based on Geometric 3D-2D
Edge Alignment [85.32080531133799]
本稿では,自由形式の曲線登録に関する古典的な問題をレビューし,効率的なrgbdビジュアルオドメトリシステムcanny-voに適用する。
エッジ登録でよく用いられる距離変換の代替として、近似近接近傍場と配向近接近傍場という2つの方法が提案されている。
3D2Dエッジアライメントは、効率性と精度の両方の観点から、これらの代替製剤の恩恵を受けます。
論文 参考訳(メタデータ) (2020-12-15T11:42:17Z) - Robust Uncertainty-Aware Multiview Triangulation [20.02647320786556]
マルチビュー三角測量と不確実性推定のための頑健で効率的な手法を提案する。
まず、中間点法を用いた2視点RANSACを用いた外乱除去方式を提案する。
第二に、初期解と不整集合を精製する異なる局所最適化法を比較する。
第三に、三角点の不確かさを、カメラの数、平均再投影誤差、最大パララックス角の3つの要素の関数としてモデル化する。
論文 参考訳(メタデータ) (2020-08-04T00:47:42Z) - Learning 3D-3D Correspondences for One-shot Partial-to-partial
Registration [66.41922513553367]
学習に基づく部分的対部分的な登録をワンショットで行うことができることを示す。
そこで本研究では,ビンの利用により閉塞点を考慮に入れた最適輸送層を提案する。
結果として得られるOPRNetフレームワークは、標準ベンチマークにおける最先端技術を上回っている。
論文 参考訳(メタデータ) (2020-06-08T12:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。