論文の概要: Robust Uncertainty-Aware Multiview Triangulation
- arxiv url: http://arxiv.org/abs/2008.01258v2
- Date: Wed, 5 Aug 2020 14:52:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 00:23:55.868800
- Title: Robust Uncertainty-Aware Multiview Triangulation
- Title(参考訳): ロバスト不確実性を考慮したマルチビュー三角測量
- Authors: Seong Hun Lee, Javier Civera
- Abstract要約: マルチビュー三角測量と不確実性推定のための頑健で効率的な手法を提案する。
まず、中間点法を用いた2視点RANSACを用いた外乱除去方式を提案する。
第二に、初期解と不整集合を精製する異なる局所最適化法を比較する。
第三に、三角点の不確かさを、カメラの数、平均再投影誤差、最大パララックス角の3つの要素の関数としてモデル化する。
- 参考スコア(独自算出の注目度): 20.02647320786556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a robust and efficient method for multiview triangulation and
uncertainty estimation. Our contribution is threefold: First, we propose an
outlier rejection scheme using two-view RANSAC with the midpoint method. By
prescreening the two-view samples prior to triangulation, we achieve the
state-of-the-art efficiency. Second, we compare different local optimization
methods for refining the initial solution and the inlier set. With an iterative
update of the inlier set, we show that the optimization provides significant
improvement in accuracy and robustness. Third, we model the uncertainty of a
triangulated point as a function of three factors: the number of cameras, the
mean reprojection error and the maximum parallax angle. Learning this model
allows us to quickly interpolate the uncertainty at test time. We validate our
method through an extensive evaluation.
- Abstract(参考訳): マルチビュー三角測量と不確実性推定のための頑健で効率的な手法を提案する。
まず, 2-view ransac と midpoint 法を併用した,outlier reject scheme を提案する。
三角測量の前に2視点サンプルを事前スクリーニングすることにより,最先端の効率性を実現する。
第二に、初期解と不整集合を精製する異なる局所最適化法を比較する。
不整集合の反復的な更新により、最適化は精度と堅牢性に大きな改善をもたらすことを示す。
第3に,三角測量点の不確かさを,カメラ数,平均再投影誤差,最大視差角の3つの要因の関数としてモデル化した。
このモデルを学ぶことで、テスト時に不確実性をすばやく補間できます。
我々は広範囲な評価を通じてその方法を検証する。
関連論文リスト
- POPoS: Improving Efficient and Robust Facial Landmark Detection with Parallel Optimal Position Search [34.50794776762681]
本稿では,高精度符号化・復号化フレームワークであるParallel Optimal Position Search (POPoS)を紹介する。
Pseudo-range multilateration は、ヒートマップエラーを補正し、ランドマークのローカライゼーションの精度を高めるために使用される。
1ステップ並列アルゴリズムを導入し、計算効率を大幅に向上し、処理時間を短縮する。
論文 参考訳(メタデータ) (2024-10-12T16:28:40Z) - Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation [68.75387874066647]
本研究では3次元ポーズ推定のための不確実性認識テスト時間最適化フレームワークを提案する。
我々のアプローチは、Human3.6Mの4.5%という大きなマージンで、過去最高の結果を上回っている。
論文 参考訳(メタデータ) (2024-02-04T04:28:02Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - Efficient first-order predictor-corrector multiple objective
optimization for fair misinformation detection [5.139559672771439]
多重目的最適化(MOO)は、複数の競合する目的を同時に最適化することを目的としており、機械学習において重要な応用を見出した。
本稿では,線形にしかスケールしないガウスニュートン近似を提案し,イテレーション毎に一階内積しか必要としない。
このイノベーションは、大規模ネットワークで予測器のコレクタを可能にする。
論文 参考訳(メタデータ) (2022-09-15T12:32:15Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - Boosting RANSAC via Dual Principal Component Pursuit [24.942079487458624]
本稿では,強力な理論的支援と効率的なアルゴリズムを備えた頑健な部分空間学習手法としてDual principal Component Pursuit (DPCP)を紹介した。
2次元ホモグラフ、基本行列、基本行列、および3次元ホモグラフテンソルの推定実験は、我々のアプローチが最先端の代替よりも一貫して精度が高いことを示している。
論文 参考訳(メタデータ) (2021-10-06T17:04:45Z) - Robust Distributed Optimization With Randomly Corrupted Gradients [24.253191879453784]
本研究では, ビザンチンの故障に頑健で, 潜在的に敵対的な挙動を示す一階分散最適化アルゴリズムを提案する。
我々のアルゴリズムは順序正規化と信頼に値する統計的誤差収束率を達成する。
論文 参考訳(メタデータ) (2021-06-28T19:45:25Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
本稿では、この局所最適問題を解くために、回転回帰のための離散連続的な新しい定式化を提案する。
我々はSO(3)の回転アンカーを均一にサンプリングし、各アンカーから目標への制約付き偏差を予測し、最適な予測を選択するための不確実性スコアを出力する。
LINEMOD と YCB-Video の2つのベンチマーク実験により,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-02-29T06:24:55Z) - 3DSSD: Point-based 3D Single Stage Object Detector [61.67928229961813]
本稿では,3DSSDと命名された点ベース3次元単段物体検出器を提案し,精度と効率のバランスが良好であることを示す。
提案手法は,最先端のボクセルをベースとした一段法を大差で上回り,二段法に匹敵する性能を有する。
論文 参考訳(メタデータ) (2020-02-24T12:01:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。