Predicting human decisions with behavioral theories and machine learning
- URL: http://arxiv.org/abs/1904.06866v2
- Date: Thu, 18 Apr 2024 07:10:17 GMT
- Title: Predicting human decisions with behavioral theories and machine learning
- Authors: Ori Plonsky, Reut Apel, Eyal Ert, Moshe Tennenholtz, David Bourgin, Joshua C. Peterson, Daniel Reichman, Thomas L. Griffiths, Stuart J. Russell, Evan C. Carter, James F. Cavanagh, Ido Erev,
- Abstract summary: We introduce BEAST Gradient Boosting (BEAST-GB), a novel hybrid model that synergizes behavioral theories with machine learning techniques.
We show that BEAST-GB achieves state-of-the-art performance on the largest publicly available dataset of human risky choice.
We also show BEAST-GB displays robust domain generalization capabilities as it effectively predicts choice behavior in new experimental contexts.
- Score: 13.000185375686325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting human decision-making under risk and uncertainty represents a quintessential challenge that spans economics, psychology, and related disciplines. Despite decades of research effort, no model can be said to accurately describe and predict human choice even for the most stylized tasks like choice between lotteries. Here, we introduce BEAST Gradient Boosting (BEAST-GB), a novel hybrid model that synergizes behavioral theories, specifically the model BEAST, with machine learning techniques. First, we show the effectiveness of BEAST-GB by describing CPC18, an open competition for prediction of human decision making under risk and uncertainty, in which BEAST-GB won. Second, we show that it achieves state-of-the-art performance on the largest publicly available dataset of human risky choice, outperforming purely data-driven neural networks, indicating the continued relevance of BEAST theoretical insights in the presence of large data. Third, we demonstrate BEAST-GB's superior predictive power in an ensemble of choice experiments in which the BEAST model alone falters, underscoring the indispensable role of machine learning in interpreting complex idiosyncratic behavioral data. Finally, we show BEAST-GB also displays robust domain generalization capabilities as it effectively predicts choice behavior in new experimental contexts that it was not trained on. These results confirm the potency of combining domain-specific theoretical frameworks with machine learning, underscoring a methodological advance with broad implications for modeling decisions in diverse environments.
Related papers
- Asymptotically Optimal Regret for Black-Box Predict-then-Optimize [7.412445894287709]
We study new black-box predict-then-optimize problems that lack special structure and where we only observe the reward from the action taken.
We present a novel loss function, which we call Empirical Soft Regret (ESR), designed to significantly improve reward when used in training.
We also show our approach significantly outperforms state-of-the-art algorithms on real-world decision-making problems in news recommendation and personalized healthcare.
arXiv Detail & Related papers (2024-06-12T04:46:23Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Investigations of Performance and Bias in Human-AI Teamwork in Hiring [30.046502708053097]
In AI-assisted decision-making, effective hybrid teamwork (human-AI) is not solely dependent on AI performance alone.
We investigate how both a model's predictive performance and bias may transfer to humans in a recommendation-aided decision task.
arXiv Detail & Related papers (2022-02-21T17:58:07Z) - On the Fairness of Machine-Assisted Human Decisions [3.4069627091757178]
We show that the inclusion of a biased human decision-maker can revert common relationships between the structure of the algorithm and the qualities of resulting decisions.
In the lab experiment, we demonstrate how predictions informed by gender-specific information can reduce average gender disparities in decisions.
arXiv Detail & Related papers (2021-10-28T17:24:45Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
We propose a probabilistic model for human motion prediction in this paper.
Our model could generate several future motions when given an observed motion sequence.
We extensively validate our approach on a large scale benchmark dataset Human3.6m.
arXiv Detail & Related papers (2021-07-14T09:05:33Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - A Subjective Model of Human Decision Making Based on Quantum Decision
Theory [0.0]
We present a model for predicting the behavior of an individual during a binary game under different amounts of risk, gain, and time pressure.
The model is based on Quantum Decision Theory (QDT), which has been shown to enable modeling of the irrational and subjective aspects of the decision making.
arXiv Detail & Related papers (2021-01-14T20:02:51Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
We introduce a machine learning (ML) approach to quantitative analysis geared towards optimizing the predictive performance.
We discuss the potential synergies between the two fields against the backdrop of this, at first glance, target-incompatibility.
We are providing a hands-on predictive modeling introduction for a quantitative social science audience while aiming at demystifying computer science jargon.
arXiv Detail & Related papers (2020-03-30T13:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.