論文の概要: Signal2Image Modules in Deep Neural Networks for EEG Classification
- arxiv url: http://arxiv.org/abs/1904.13216v9
- Date: Mon, 13 Nov 2023 18:17:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 00:57:41.913515
- Title: Signal2Image Modules in Deep Neural Networks for EEG Classification
- Title(参考訳): 深層ニューラルネットワークにおける脳波分類のためのsignal2イメージモジュール
- Authors: Paschalis Bizopoulos, George I Lambrou and Dimitrios Koutsouris
- Abstract要約: 我々は、Signal2Image (S2Is) という用語を、信号から画像のような表現に変換するトレーニング可能なプレフィックスモジュールまたは非トレーニング可能なプレフィックスモジュールとして定義する。
我々は,4つのS2Iの精度と時間特性(画像としての信号,分光図,1層と2層の畳み込みニューラルネットワーク(CNN))と,ベースモデルのセット(LeNet,AlexNet,VGGnet,ResNet,DenseNet)と,後者の深度と1次元のバリエーションを比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has revolutionized computer vision utilizing the increased
availability of big data and the power of parallel computational units such as
graphical processing units. The vast majority of deep learning research is
conducted using images as training data, however the biomedical domain is rich
in physiological signals that are used for diagnosis and prediction problems.
It is still an open research question how to best utilize signals to train deep
neural networks.
In this paper we define the term Signal2Image (S2Is) as trainable or
non-trainable prefix modules that convert signals, such as
Electroencephalography (EEG), to image-like representations making them
suitable for training image-based deep neural networks defined as `base
models'. We compare the accuracy and time performance of four S2Is (`signal as
image', spectrogram, one and two layer Convolutional Neural Networks (CNNs))
combined with a set of `base models' (LeNet, AlexNet, VGGnet, ResNet, DenseNet)
along with the depth-wise and 1D variations of the latter. We also provide
empirical evidence that the one layer CNN S2I performs better in eleven out of
fifteen tested models than non-trainable S2Is for classifying EEG signals and
we present visual comparisons of the outputs of the S2Is.
- Abstract(参考訳): ディープラーニングは、ビッグデータの可用性の向上とグラフィカル処理ユニットのような並列計算ユニットのパワーを活用して、コンピュータビジョンに革命をもたらした。
ディープラーニング研究の大部分はトレーニングデータとして画像を用いて行われているが、生体医学領域は診断や予測に使用される生理的シグナルに富んでいる。
ディープニューラルネットワークのトレーニングにシグナルを最大限に活用するには、まだ研究の余地がある。
本稿では,脳波(EEG)などの信号から,「ベースモデル」として定義された画像ベースディープニューラルネットワークのトレーニングに適した画像様表現に変換する,訓練可能なあるいは訓練不可能なプレフィックスモジュールとしてSignal2Image(S2Is)という用語を定義する。
我々は,4つのS2I("signal as image', Spectrogram, one and two layer Convolutional Neural Networks (CNNs)")の精度と時間性能を,後者の深度と1次元のバリエーションとともに,一連の'base model'(LeNet, AlexNet, VGGnet, ResNet, DenseNet)と組み合わせて比較した。
また、脳波信号の分類のための訓練不能なS2Iよりも、CNN S2Iが15の試験モデルのうち11の層で優れた性能を示し、S2Iの出力の視覚的比較を示す。
関連論文リスト
- Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の先駆けとなった。
本研究では,特徴学習理論の文脈におけるグラフ畳み込みの役割について検討する。
論文 参考訳(メタデータ) (2023-06-24T10:21:11Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
ニューラルインシシット辞書(NID)を学習することで、データとトレーニング効率の両方を達成する汎用INRフレームワークを提案する。
我々のNIDは、所望の関数空間にまたがるように調整された座標ベースのImpworksのグループを組み立てる。
実験の結果,NIDは最大98%の入力データで2次元画像や3次元シーンの再現を2桁高速化できることがわかった。
論文 参考訳(メタデータ) (2022-07-08T05:07:19Z) - Classification of EEG Motor Imagery Using Deep Learning for
Brain-Computer Interface Systems [79.58173794910631]
トレーニングされたT1クラス畳み込みニューラルネットワーク(CNN)モデルを使用して、運動画像の識別を成功させる能力を調べる。
理論的には、モデルが正確にトレーニングされた場合、クラスを特定し、それに従ってラベル付けすることが可能になる。
CNNモデルは復元され、より小さなサンプルデータを使用して同じ種類の運動画像データを特定するために使用される。
論文 参考訳(メタデータ) (2022-05-31T17:09:46Z) - Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN [3.3909577600092122]
そこで我々は,網膜CT画像復調のためのDual-Merged Cycle-WGANと呼ばれる新しいサイクル一貫性生成適応ネットを提案する。
本モデルでは,2つのCycle-GANネットワークとデクリミネータとワッセルシュタイン損失を併用して,優れたトレーニング安定性と性能を実現する。
論文 参考訳(メタデータ) (2022-05-02T07:38:19Z) - EEG-ITNet: An Explainable Inception Temporal Convolutional Network for
Motor Imagery Classification [0.5616884466478884]
我々はEEG-ITNetと呼ばれるエンドツーエンドのディープラーニングアーキテクチャを提案する。
本モデルでは,多チャンネル脳波信号からスペクトル,空間,時間情報を抽出することができる。
EEG-ITNetは、異なるシナリオにおける分類精度を最大5.9%改善する。
論文 参考訳(メタデータ) (2022-04-14T13:18:43Z) - HistoTransfer: Understanding Transfer Learning for Histopathology [9.231495418218813]
我々は、ImageNetと病理組織データに基づいてトレーニングされたネットワークから抽出された特徴の性能を比較した。
より複雑なネットワークを用いて学習した機能が性能向上につながるかどうかを検討する。
論文 参考訳(メタデータ) (2021-06-13T18:55:23Z) - Variational models for signal processing with Graph Neural Networks [3.5939555573102853]
本稿では,ニューラルネットワークを用いた点雲の信号処理について述べる。
本研究では,このようなグラフニューラルネットワークの変分モデルを用いて,教師なし学習のためのグラフ上の信号を処理する方法を検討する。
論文 参考訳(メタデータ) (2021-03-30T13:31:11Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - On the interplay between physical and content priors in deep learning
for computational imaging [5.486833154281385]
我々は、レンズレス位相イメージングシステムにおいて、位相抽出ニューラルネットワーク(PhENN)を用いて定量的位相検索を行う。
2つの質問が関連していることを示し、トレーニング例の選択という共通点を共有します。
また, より弱い正規化効果により, 基礎となる伝搬モデルの学習性が向上することが判明した。
論文 参考訳(メタデータ) (2020-04-14T08:36:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。