An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting
Using Deep Learning
- URL: http://arxiv.org/abs/1905.02616v3
- Date: Tue, 1 Aug 2023 13:31:35 GMT
- Title: An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting
Using Deep Learning
- Authors: Sakshi Mishra, Praveen Palanisamy
- Abstract summary: Short-term solar irradiance forecasting is difficult due to the non-stationary characteristic of solar power.
We propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance.
Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites.
- Score: 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For short-term solar irradiance forecasting, the traditional point
forecasting methods are rendered less useful due to the non-stationary
characteristic of solar power. The amount of operating reserves required to
maintain reliable operation of the electric grid rises due to the variability
of solar energy. The higher the uncertainty in the generation, the greater the
operating-reserve requirements, which translates to an increased cost of
operation. In this research work, we propose a unified architecture for
multi-time-scale predictions for intra-day solar irradiance forecasting using
recurrent neural networks (RNN) and long-short-term memory networks (LSTMs).
This paper also lays out a framework for extending this modeling approach to
intra-hour forecasting horizons thus, making it a multi-time-horizon
forecasting approach, capable of predicting intra-hour as well as intra-day
solar irradiance. We develop an end-to-end pipeline to effectuate the proposed
architecture. The performance of the prediction model is tested and validated
by the methodical implementation. The robustness of the approach is
demonstrated with case studies conducted for geographically scattered sites
across the United States. The predictions demonstrate that our proposed unified
architecture-based approach is effective for multi-time-scale solar forecasts
and achieves a lower root-mean-square prediction error when benchmarked against
the best-performing methods documented in the literature that use separate
models for each time-scale during the day. Our proposed method results in a
71.5% reduction in the mean RMSE averaged across all the test sites compared to
the ML-based best-performing method reported in the literature. Additionally,
the proposed method enables multi-time-horizon forecasts with real-time inputs,
which have a significant potential for practical industry applications in the
evolving grid.
Related papers
- Improving Model Chain Approaches for Probabilistic Solar Energy Forecasting through Post-processing and Machine Learning [0.0]
We develop statistical and machine learning methods for post-processing ensemble predictions of global horizontal irradiance and solar power generation.
Our results indicate that post-processing substantially improves the solar power generation forecasts, in particular when post-processing is applied to the power predictions.
arXiv Detail & Related papers (2024-06-06T18:08:50Z) - On-line conformalized neural networks ensembles for probabilistic forecasting of day-ahead electricity prices [41.94295877935867]
We propose a novel approach to PEPF, extending the state of the art neural networks ensembles based methods through conformal inference based techniques.
Experiments have been conducted on multiple market regions, achieving day-ahead forecasts with improved hourly coverage and stable probabilistic scores.
arXiv Detail & Related papers (2024-04-03T13:22:47Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - KPF-AE-LSTM: A Deep Probabilistic Model for Net-Load Forecasting in High
Solar Scenarios [0.0]
This paper presents a deep learning method to generate probabilistic forecasts of day-ahead net-load at 15-min resolution, at various solar penetration levels.
The models are shown to deliver superior forecast performance, as well as maintain superior training efficiency, in comparison to existing benchmark models.
arXiv Detail & Related papers (2022-03-05T10:54:54Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques [2.3436632098950456]
This paper presents a review of state-of-the-art forecasting methods for smart grid (SG) systems.
Traditional point forecasting methods including statistical, machine learning (ML), and deep learning (DL) are extensively investigated.
A comparative case study using the Victorian electricity consumption and American electric power (AEP) is conducted.
arXiv Detail & Related papers (2020-11-25T09:17:07Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Forecasting Photovoltaic Power Production using a Deep Learning Sequence
to Sequence Model with Attention [0.0]
We propose a supervised deep learning model for end-to-end forecasting of PV power production.
The proposed model is based on two seminal concepts that led to significant performance improvements in other sequence-related fields.
The results show that the new design performs at or above the current state of the art of PV power forecasting.
arXiv Detail & Related papers (2020-08-06T17:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.