Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques
- URL: http://arxiv.org/abs/2011.12598v3
- Date: Mon, 23 May 2022 23:42:12 GMT
- Title: Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques
- Authors: Devinder Kaur, Shama Naz Islam, Md. Apel Mahmud, Md. Enamul Haque and
ZhaoYang Dong
- Abstract summary: This paper presents a review of state-of-the-art forecasting methods for smart grid (SG) systems.
Traditional point forecasting methods including statistical, machine learning (ML), and deep learning (DL) are extensively investigated.
A comparative case study using the Victorian electricity consumption and American electric power (AEP) is conducted.
- Score: 2.3436632098950456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy forecasting has a vital role to play in smart grid (SG) systems
involving various applications such as demand-side management, load shedding,
and optimum dispatch. Managing efficient forecasting while ensuring the least
possible prediction error is one of the main challenges posed in the grid
today, considering the uncertainty and granularity in SG data. This paper
presents a comprehensive and application-oriented review of state-of-the-art
forecasting methods for SG systems along with recent developments in
probabilistic deep learning (PDL) considering different models and
architectures. Traditional point forecasting methods including statistical,
machine learning (ML), and deep learning (DL) are extensively investigated in
terms of their applicability to energy forecasting. In addition, the
significance of hybrid and data pre-processing techniques to support
forecasting performance is also studied. A comparative case study using the
Victorian electricity consumption and American electric power (AEP) datasets is
conducted to analyze the performance of point and probabilistic forecasting
methods. The analysis demonstrates higher accuracy of the long-short term
memory (LSTM) models with appropriate hyper-parameter tuning among point
forecasting methods especially when sample sizes are larger and involve
nonlinear patterns with long sequences. Furthermore, Bayesian bidirectional
LSTM (BLSTM) as a probabilistic method exhibit the highest accuracy in terms of
least pinball score and root mean square error (RMSE).
Related papers
- On the Impact of PRB Load Uncertainty Forecasting for Sustainable Open RAN [2.526444902695476]
The transition to sustainable Open Radio Access Network (O-RAN) architectures brings new challenges for resource management.
We propose a novel approach to characterize the Physical Resource Block (PRB) load using probabilistic forecasting techniques.
arXiv Detail & Related papers (2024-07-19T15:25:20Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
We evaluate their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-09-05T22:13:35Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - A comparative assessment of deep learning models for day-ahead load
forecasting: Investigating key accuracy drivers [2.572906392867547]
Short-term load forecasting (STLF) is vital for the effective and economic operation of power grids and energy markets.
Several deep learning models have been proposed in the literature for STLF, reporting promising results.
arXiv Detail & Related papers (2023-02-23T17:11:04Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting
Using Deep Learning [1.52292571922932]
Short-term solar irradiance forecasting is difficult due to the non-stationary characteristic of solar power.
We propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance.
Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites.
arXiv Detail & Related papers (2019-05-07T14:40:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.