Uneven illumination surface defects inspection based on convolutional
neural network
- URL: http://arxiv.org/abs/1905.06683v3
- Date: Sat, 15 Jul 2023 03:33:32 GMT
- Title: Uneven illumination surface defects inspection based on convolutional
neural network
- Authors: Hao Wu, Yulong Liu, Wenbin Gao, Xiangrong Xu
- Abstract summary: This paper proposes a method for detecting surface image defects based on convolutional neural network.
Experimental on defect inspection of copper strip and steel images shows that the convolutional neural network can automatically learn features without preprocessing the image.
- Score: 4.475821533240529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surface defect inspection based on machine vision is often affected by uneven
illumination. In order to improve the inspection rate of surface defects
inspection under uneven illumination condition, this paper proposes a method
for detecting surface image defects based on convolutional neural network,
which is based on the adjustment of convolutional neural networks, training
parameters, changing the structure of the network, to achieve the purpose of
accurately identifying various defects. Experimental on defect inspection of
copper strip and steel images shows that the convolutional neural network can
automatically learn features without preprocessing the image, and correct
identification of various types of image defects affected by uneven
illumination, thus overcoming the drawbacks of traditional machine vision
inspection methods under uneven illumination.
Related papers
- DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - CINFormer: Transformer network with multi-stage CNN feature injection
for surface defect segmentation [73.02218479926469]
We propose a transformer network with multi-stage CNN feature injection for surface defect segmentation.
CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder.
In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects.
arXiv Detail & Related papers (2023-09-22T06:12:02Z) - A Lightweight Reconstruction Network for Surface Defect Inspection [3.6823636353870954]
This paper proposes an unsupervised defect detection algorithm based on a reconstruction network.
The reconstruction network is designed through a fully convolutional autoencoder with a lightweight structure.
The results show that the unsupervised defect detection algorithm of the reconstructed network has strong robustness and accuracy.
arXiv Detail & Related papers (2022-12-25T08:59:15Z) - Defect-GAN: High-Fidelity Defect Synthesis for Automated Defect
Inspection [34.699695525216185]
Defect-GAN is an automated defect synthesis network that generates realistic and diverse defect samples.
It learns through defacement and restoration processes, where the defacement generates defects on normal surface images.
It can also mimic variations of defects and offer flexible control over the locations and categories of the generated defects.
arXiv Detail & Related papers (2021-03-28T15:53:34Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem.
Existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both.
We propose an uncalibrated neural inverse rendering approach to this problem.
arXiv Detail & Related papers (2020-12-12T10:33:08Z) - Deep Photometric Stereo for Non-Lambertian Surfaces [89.05501463107673]
We introduce a fully convolutional deep network for calibrated photometric stereo, which we call PS-FCN.
PS-FCN learns the mapping from reflectance observations to surface normal, and is able to handle surfaces with general and unknown isotropic reflectance.
To deal with the uncalibrated scenario where light directions are unknown, we introduce a new convolutional network, named LCNet, to estimate light directions from input images.
arXiv Detail & Related papers (2020-07-26T15:20:53Z) - Recurrent Exposure Generation for Low-Light Face Detection [113.25331155337759]
We propose a novel Recurrent Exposure Generation (REG) module and a Multi-Exposure Detection (MED) module.
REG produces progressively and efficiently intermediate images corresponding to various exposure settings.
Such pseudo-exposures are then fused by MED to detect faces across different lighting conditions.
arXiv Detail & Related papers (2020-07-21T17:30:51Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - Adaptive optics with reflected light and deep neural networks [0.0]
We develop a method for adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration.
Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated.
Deep neural networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples.
arXiv Detail & Related papers (2020-04-09T15:39:51Z) - Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines [1.602803566465659]
Bolts are the most numerous fasteners in transmission lines and are prone to losing their split pins.
How to realize the automatic pin-missing defect detection for bolts in transmission lines so as to achieve timely and efficient trouble shooting is a difficult problem.
In this paper, an automatic detection model called Automatic Visual Shape Clustering Network (AVSCNet) for pin-missing defect is constructed.
arXiv Detail & Related papers (2020-01-17T10:57:37Z) - A Novel Visual Fault Detection and Classification System for Semiconductor Manufacturing Using Stacked Hybrid Convolutional Neural Networks [0.24999074238880484]
Automated visual inspection in the semiconductor industry aims to detect and classify manufacturing defects.
This contribution introduces a novel deep neural network based hybrid approach.
Consisting of stacked hybrid convolutional neural networks (SH-CNN) and inspired by current approaches of visual attention, the realized system draws the focus over the level of detail from its structures.
arXiv Detail & Related papers (2019-11-25T21:58:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.