YOLO Network For Defect Detection In Optical lenses
- URL: http://arxiv.org/abs/2502.07592v1
- Date: Tue, 11 Feb 2025 14:41:30 GMT
- Title: YOLO Network For Defect Detection In Optical lenses
- Authors: Habib Yaseen,
- Abstract summary: This study presents an automated defect detection system based on the YOLOv8 deep learning model.
A custom dataset of optical lenses, annotated with defect and lens regions, was created to train the model.
Experimental results obtained in this study reveal that the system can be used to efficiently and accurately detect defects in optical lenses.
- Score: 0.0
- License:
- Abstract: Mass-produced optical lenses often exhibit defects that alter their scattering properties and compromise quality standards. Manual inspection is usually adopted to detect defects, but it is not recommended due to low accuracy, high error rate and limited scalability. To address these challenges, this study presents an automated defect detection system based on the YOLOv8 deep learning model. A custom dataset of optical lenses, annotated with defect and lens regions, was created to train the model. Experimental results obtained in this study reveal that the system can be used to efficiently and accurately detect defects in optical lenses. The proposed system can be utilized in real-time industrial environments to enhance quality control processes by enabling reliable and scalable defect detection in optical lens manufacturing.
Related papers
- Classification robustness to common optical aberrations [64.08840063305313]
This paper proposes OpticsBench, a benchmark for investigating robustness to realistic, practically relevant optical blur effects.
Experiments on ImageNet show that for a variety of different pre-trained DNNs, the performance varies strongly compared to disk-shaped kernels.
We show on ImageNet-100 with OpticsAugment that can be increased by using optical kernels as data augmentation.
arXiv Detail & Related papers (2023-08-29T08:36:00Z) - Automated Semiconductor Defect Inspection in Scanning Electron
Microscope Images: a Systematic Review [4.493547775253646]
Machine learning algorithms can be trained to accurately classify and locate defects in semiconductor samples.
Convolutional neural networks have proved to be particularly useful in this regard.
This systematic review provides a comprehensive overview of the state of automated semiconductor defect inspection on SEM images.
arXiv Detail & Related papers (2023-08-16T13:59:43Z) - Neural Invertible Variable-degree Optical Aberrations Correction [6.6855248718044225]
We propose a novel aberration correction method with an invertible architecture by leveraging its information-lossless property.
Within the architecture, we develop conditional invertible blocks to allow the processing of aberrations with variable degrees.
Our method is evaluated on both a synthetic dataset from physics-based imaging simulation and a real captured dataset.
arXiv Detail & Related papers (2023-04-12T01:56:42Z) - Neural Lens Modeling [50.57409162437732]
NeuroLens is a neural lens model for distortion and vignetting that can be used for point projection and ray casting.
It can be used to perform pre-capture calibration using classical calibration targets, and can later be used to perform calibration or refinement during 3D reconstruction.
The model generalizes across many lens types and is trivial to integrate into existing 3D reconstruction and rendering systems.
arXiv Detail & Related papers (2023-04-10T20:09:17Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - Defect-GAN: High-Fidelity Defect Synthesis for Automated Defect
Inspection [34.699695525216185]
Defect-GAN is an automated defect synthesis network that generates realistic and diverse defect samples.
It learns through defacement and restoration processes, where the defacement generates defects on normal surface images.
It can also mimic variations of defects and offer flexible control over the locations and categories of the generated defects.
arXiv Detail & Related papers (2021-03-28T15:53:34Z) - Automatic Defect Detection of Print Fabric Using Convolutional Neural
Network [0.0]
There are different contemporary research on automatic defect detection systems using image processing and machine learning techniques.
Researchers have also been able to establish real-time defect detection system during weaving.
This research has fulfilled this gap by developing a print fabric database and implementing deep convolutional neural network.
arXiv Detail & Related papers (2021-01-03T20:56:56Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
Miscalibration is a mismatch between a model's confidence and its correctness.
We show that focal loss allows us to learn models that are already very well calibrated.
We show that our approach achieves state-of-the-art calibration without compromising on accuracy in almost all cases.
arXiv Detail & Related papers (2020-02-21T17:35:50Z) - Uneven illumination surface defects inspection based on convolutional
neural network [4.475821533240529]
This paper proposes a method for detecting surface image defects based on convolutional neural network.
Experimental on defect inspection of copper strip and steel images shows that the convolutional neural network can automatically learn features without preprocessing the image.
arXiv Detail & Related papers (2019-05-16T12:18:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.