Merging versus Ensembling in Multi-Study Prediction: Theoretical Insight from Random Effects
- URL: http://arxiv.org/abs/1905.07382v4
- Date: Thu, 12 Dec 2024 18:47:50 GMT
- Title: Merging versus Ensembling in Multi-Study Prediction: Theoretical Insight from Random Effects
- Authors: Zoe Guan, Giovanni Parmigiani, Prasad Patil,
- Abstract summary: We compare two multi-study prediction approaches in the presence of potential heterogeneity in predictor-outcome relationships across datasets.
For ridge regression, we show analytically and confirm via simulation that merging yields lower prediction error than ensembling.
We provide analytic expressions for the transition point in various scenarios, study properties, and illustrate how transition point theory can be used for deciding studies should be combined with application from metagenomics.
- Score: 1.2065918767980095
- License:
- Abstract: A critical decision point when training predictors using multiple studies is whether studies should be combined or treated separately. We compare two multi-study prediction approaches in the presence of potential heterogeneity in predictor-outcome relationships across datasets: 1) merging all of the datasets and training a single learner, and 2) multi-study ensembling, which involves training a separate learner on each dataset and combining the predictions resulting from each learner. For ridge regression, we show analytically and confirm via simulation that merging yields lower prediction error than ensembling when the predictor-outcome relationships are relatively homogeneous across studies. However, as cross-study heterogeneity increases, there exists a transition point beyond which ensembling outperforms merging. We provide analytic expressions for the transition point in various scenarios, study asymptotic properties, and illustrate how transition point theory can be used for deciding when studies should be combined with an application from metagenomics.
Related papers
- Generative vs. Discriminative modeling under the lens of uncertainty quantification [0.929965561686354]
In this paper, we undertake a comparative analysis of generative and discriminative approaches.
We compare the ability of both approaches to leverage information from various sources in an uncertainty aware inference.
We propose a general sampling scheme enabling supervised learning for both approaches, as well as semi-supervised learning when compatible with the considered modeling approach.
arXiv Detail & Related papers (2024-06-13T14:32:43Z) - Multi-CATE: Multi-Accurate Conditional Average Treatment Effect Estimation Robust to Unknown Covariate Shifts [12.289361708127876]
We use methodology for learning multi-accurate predictors to post-process CATE T-learners.
We show how this approach can combine (large) confounded observational and (smaller) randomized datasets.
arXiv Detail & Related papers (2024-05-28T14:12:25Z) - Understanding Forgetting in Continual Learning with Linear Regression [21.8755265936716]
Continual learning, focused on sequentially learning multiple tasks, has gained significant attention recently.
We provide a general theoretical analysis of forgetting in the linear regression model via Gradient Descent.
We demonstrate that, given a sufficiently large data size, the arrangement of tasks in a sequence, where tasks with larger eigenvalues in their population data covariance matrices are trained later, tends to result in increased forgetting.
arXiv Detail & Related papers (2024-05-27T18:33:37Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Learning Mixture Structure on Multi-Source Time Series for Probabilistic
Forecasting [4.179947630802189]
We propose a neural mixture structure-based probability model for learning different predictive relations.
We present the prediction and uncertainty quantification methods that apply to different distributions of target variables.
arXiv Detail & Related papers (2023-02-22T00:51:44Z) - Multi-Study Boosting: Theoretical Considerations for Merging vs.
Ensembling [2.252304836689618]
Cross-study replicability is a powerful model evaluation criterion that emphasizes generalizability of predictions.
We study boosting algorithms in the presence of potential heterogeneity in predictor-outcome relationships across studies.
We compare two multi-study learning strategies: 1) merging all the studies and training a single model, and 2) multi-study ensembling.
arXiv Detail & Related papers (2022-07-11T02:25:47Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Stable Prediction via Leveraging Seed Variable [73.9770220107874]
Previous machine learning methods might exploit subtly spurious correlations in training data induced by non-causal variables for prediction.
We propose a conditional independence test based algorithm to separate causal variables with a seed variable as priori, and adopt them for stable prediction.
Our algorithm outperforms state-of-the-art methods for stable prediction.
arXiv Detail & Related papers (2020-06-09T06:56:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.