論文の概要: Fr\'echet random forests for metric space valued regression with non
euclidean predictors
- arxiv url: http://arxiv.org/abs/1906.01741v3
- Date: Fri, 16 Feb 2024 12:41:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 21:37:49.664091
- Title: Fr\'echet random forests for metric space valued regression with non
euclidean predictors
- Title(参考訳): 非ユークリッド予測器を用いた計量空間価値回帰のためのfr\'echetランダム森林
- Authors: Louis Capitaine, J\'er\'emie Bigot, Rodolphe Thi\'ebaut and Robin
Genuer
- Abstract要約: 我々はFr'echet木とFr'echetランダムフォレストを導入し、入力変数と出力変数が一般的な距離空間で値を取るデータを処理する。
データ駆動分割を用いたFr'echet回帰図予測器の一貫性定理をFr'echetの純粋にランダムな木に適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Random forests are a statistical learning method widely used in many areas of
scientific research because of its ability to learn complex relationships
between input and output variables and also its capacity to handle
high-dimensional data. However, current random forest approaches are not
flexible enough to handle heterogeneous data such as curves, images and shapes.
In this paper, we introduce Fr\'echet trees and Fr\'echet random forests, which
allow to handle data for which input and output variables take values in
general metric spaces. To this end, a new way of splitting the nodes of trees
is introduced and the prediction procedures of trees and forests are
generalized. Then, random forests out-of-bag error and variable importance
score are naturally adapted. A consistency theorem for Fr\'echet regressogram
predictor using data-driven partitions is given and applied to Fr\'echet purely
uniformly random trees. The method is studied through several simulation
scenarios on heterogeneous data combining longitudinal, image and scalar data.
Finally, one real dataset about air quality is used to illustrate the use of
the proposed method in practice.
- Abstract(参考訳): ランダムフォレスト(英: random forests)は、入力変数と出力変数の複雑な関係を学習する能力と高次元データを扱う能力から、多くの科学研究で広く用いられている統計学習手法である。
しかし、現在のランダムフォレストアプローチは、曲線、画像、形状といった異種データを扱うのに十分な柔軟性がない。
本稿では,入力変数と出力変数が一般的な距離空間で値を取るデータを扱うために,fr\'echet木とfr\'echetランダムフォレストを導入する。
この目的のために、木のノードを分割する新しい方法を導入し、木や森林の予測手順を一般化した。
そして、ランダム森林のバグエラーと変動重要度スコアを自然に適用する。
データ駆動分割を用いたFr'echet回帰図予測器の一貫性定理を与え、Fr'echet純ランダム木に適用する。
本手法は, 縦・画像・スカラーデータを組み合わせた異種データのシミュレーションシナリオを用いて検討した。
最後に,空気質に関する実データを用いて,提案手法の実践例を示す。
関連論文リスト
- Ensembles of Probabilistic Regression Trees [46.53457774230618]
木に基づくアンサンブル法は多くの応用や研究で回帰問題に成功している。
本研究では,確率分布に関する各領域の観察を割り当てることで,目的関数のスムーズな近似を提供する確率回帰木のアンサンブルバージョンについて検討する。
論文 参考訳(メタデータ) (2024-06-20T06:51:51Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
統計学で広く普及している偏りと分散還元に対する現在の高次二分法は、木のアンサンブルを理解するには不十分である、と我々は主張する。
森林は、通常暗黙的に絡み合っている3つの異なるメカニズムによって、樹木を改良できることを示す。
論文 参考訳(メタデータ) (2024-02-02T15:36:43Z) - Inference with Mondrian Random Forests [6.97762648094816]
我々は、モンドリアンのランダムな森林回帰推定器に対して、ベリー・エッセイン型中央極限定理とともに、正確なバイアスと分散特性を与える。
未知回帰関数に対する有効な統計的推測法を提案する。
効率的で実装可能なアルゴリズムは、バッチとオンラインの学習設定の両方に考案されている。
論文 参考訳(メタデータ) (2023-10-15T01:41:42Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Random Similarity Forests [2.3204178451683264]
本稿では,任意のデータ型の特徴を持つデータセットを,各特徴の特徴を保ちながら扱える分類法を提案する。
提案したアルゴリズムはランダム類似林(Random similarity Forest)と呼ばれ、複数のドメイン固有の距離測定を用いて、ランダム類似林(Random Forests)の予測性能と類似林(Random similarity Forests)の柔軟性を組み合わせている。
ランダム類似林はRandom Forestsの数値データと同等であり、複雑なデータドメインや混合データドメインのデータセットよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-11T20:14:05Z) - Geometry- and Accuracy-Preserving Random Forest Proximities [3.265773263570237]
我々はランダムフォレスト-ジオメトリー(Random Forest-Geometry- and Accuracy-Preserving Proximities:RF-GAP)と呼ばれるランダムフォレスト確率の新しい定義を導入する。
RF-GAPは乱林予測と正確に一致していることが証明された。
この幾何表現の改善は、データ計算などのタスクにおいて従来のランダムな森の確率よりも優れており、学習したデータ幾何と整合した外れ値の検出と可視化結果を提供する。
論文 参考訳(メタデータ) (2022-01-29T23:13:53Z) - MURAL: An Unsupervised Random Forest-Based Embedding for Electronic
Health Record Data [59.26381272149325]
異なる変数型でデータを表現するための教師なしランダムフォレストを提案する。
muraL forestsは、ノード分割変数がランダムに選択される一連の決定ツリーで構成されている。
提案手法を用いることで,競合するアプローチよりも正確なデータの視覚化と分類が可能であることを示す。
論文 参考訳(メタデータ) (2021-11-19T22:02:21Z) - Achieving Reliable Causal Inference with Data-Mined Variables: A Random
Forest Approach to the Measurement Error Problem [1.5749416770494704]
一般的な実証的戦略は、利用可能なデータから関心のある変数を'マイニング'する予測モデリング手法の適用を含む。
最近の研究は、機械学習モデルからの予測は必然的に不完全であるため、予測変数に基づく計量分析は測定誤差によるバイアスに悩まされる可能性が高いことを強調している。
ランダムフォレストと呼ばれるアンサンブル学習技術を用いて,これらのバイアスを軽減する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-12-19T21:48:23Z) - Handling Missing Data in Decision Trees: A Probabilistic Approach [41.259097100704324]
確率論的アプローチを採り、決定木で欠落したデータを扱う問題に対処する。
我々は, トラクタブル密度推定器を用いて, モデルの「予測予測」を計算する。
学習時には「予測予測損失」を最小限に抑えて学習済みの樹木の微調整パラメーターを微調整する。
論文 参考訳(メタデータ) (2020-06-29T19:54:54Z) - Stable Prediction via Leveraging Seed Variable [73.9770220107874]
従来の機械学習手法は、非因果変数によって誘導されるトレーニングデータにおいて、微妙に刺激的な相関を利用して予測する。
本研究では, 条件付き独立性テストに基づくアルゴリズムを提案し, 種子変数を先行変数とする因果変数を分離し, 安定な予測に採用する。
我々のアルゴリズムは、安定した予測のための最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-06-09T06:56:31Z) - A Numerical Transform of Random Forest Regressors corrects
Systematically-Biased Predictions [0.0]
ランダムな森林モデルからの予測には体系的なバイアスがある。
このバイアスは単純な合成データセットで再カプセル化される。
トレーニングデータを使用して、それを完全に修正する数値変換を定義します。
論文 参考訳(メタデータ) (2020-03-16T21:18:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。