論文の概要: Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling
- arxiv url: http://arxiv.org/abs/1910.11436v3
- Date: Sat, 20 Apr 2024 14:12:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-05 18:18:22.153872
- Title: Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling
- Title(参考訳): ノード決定プール付きグラフニューラルネットワークにおける階層的表現学習
- Authors: Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, Cesare Alippi,
- Abstract要約: グラフニューラルネットワーク(GNN)では、プール演算子は入力グラフの局所的な要約を計算し、そのグローバルな特性をキャプチャする。
グラフトポロジ全体を保存しながら粗いグラフを生成するGNNのためのプール演算子であるNode Decimation Pooling (NDP)を提案する。
NDPは、最先端のグラフプーリング演算子よりも効率的であり、同時に、様々なグラフ分類タスクにおける競合性能にも達する。
- 参考スコア(独自算出の注目度): 31.812988573924674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In graph neural networks (GNNs), pooling operators compute local summaries of input graphs to capture their global properties, and they are fundamental for building deep GNNs that learn hierarchical representations. In this work, we propose the Node Decimation Pooling (NDP), a pooling operator for GNNs that generates coarser graphs while preserving the overall graph topology. During training, the GNN learns new node representations and fits them to a pyramid of coarsened graphs, which is computed offline in a pre-processing stage. NDP consists of three steps. First, a node decimation procedure selects the nodes belonging to one side of the partition identified by a spectral algorithm that approximates the \maxcut{} solution. Afterwards, the selected nodes are connected with Kron reduction to form the coarsened graph. Finally, since the resulting graph is very dense, we apply a sparsification procedure that prunes the adjacency matrix of the coarsened graph to reduce the computational cost in the GNN. Notably, we show that it is possible to remove many edges without significantly altering the graph structure. Experimental results show that NDP is more efficient compared to state-of-the-art graph pooling operators while reaching, at the same time, competitive performance on a significant variety of graph classification tasks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)では、プール演算子は入力グラフの局所的な要約を計算し、そのグローバルな特性を捉える。
本研究では,全体のグラフトポロジを保ちながら粗いグラフを生成するGNNのためのプール演算子であるノード決定プール(NDP)を提案する。
トレーニング中、GNNは新しいノード表現を学び、それらを粗いグラフのピラミッドに適合させ、前処理の段階でオフラインで計算する。
NDPは3つのステップから構成される。
まず、ノードデシメーション手順は、スペクトルアルゴリズムによって同定された分割の一方の側に属するノードを選択し、 \maxcut{} 解を近似する。
その後、選択されたノードはKron還元と接続され、粗いグラフを形成する。
最後に、得られたグラフは非常に密度が高いので、粗いグラフの隣接行列を具現化してGNNの計算コストを削減するスペーシフィケーション手法を適用する。
特に、グラフ構造を著しく変更することなく、多くのエッジを除去できることが示されている。
実験の結果、NDPは最先端のグラフプーリング演算子よりも効率が良く、同時に、多種多様なグラフ分類タスクにおける競合性能も向上していることがわかった。
関連論文リスト
- Learning on Large Graphs using Intersecting Communities [13.053266613831447]
MPNNは、各ノードの隣人からのメッセージを集約することで、入力グラフ内の各ノードの表現を反復的に更新する。
MPNNは、あまりスパースではないため、すぐに大きなグラフの禁止になるかもしれない。
本稿では,入力グラフを交差するコミュニティグラフ (ICG) として近似することを提案する。
論文 参考訳(メタデータ) (2024-05-31T09:26:26Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Graph Parsing Networks [64.5041886737007]
本稿では,効率的なグラフ解析アルゴリズムを提案する。
結果として得られるグラフパーシングネットワーク(GPN)は、個々のグラフに対してパーソナライズされたプーリング構造を適応的に学習する。
論文 参考訳(メタデータ) (2024-02-22T09:08:36Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
ノード分類のためのグラフエコー状態ネットワーク(GESN)を用いた異種グラフの課題に対処する。
GESNはグラフのための貯水池計算モデルであり、ノードの埋め込みは訓練されていないメッセージパッシング関数によって計算される。
実験の結果, 貯水池モデルでは, ほぼ完全に訓練された深層モデルに対して, より優れた精度あるいは同等の精度が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-14T19:42:31Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Multi-grained Semantics-aware Graph Neural Networks [13.720544777078642]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力な技術である。
本研究では,ノードとグラフ表現を対話的に学習する統合モデルAdamGNNを提案する。
14の実世界のグラフデータセットに対する実験により、AdamGNNはノードとグラフの両方のタスクにおいて17の競合するモデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2020-10-01T07:52:06Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。