論文の概要: Training Graph Neural Networks on Growing Stochastic Graphs
- arxiv url: http://arxiv.org/abs/2210.15567v1
- Date: Thu, 27 Oct 2022 16:00:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 14:56:36.999946
- Title: Training Graph Neural Networks on Growing Stochastic Graphs
- Title(参考訳): 成長確率グラフによるグラフニューラルネットワークの学習
- Authors: Juan Cervino, Luana Ruiz, Alejandro Ribeiro
- Abstract要約: グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
- 参考スコア(独自算出の注目度): 114.75710379125412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful
patterns in networked data. Based on matrix multiplications, convolutions incur
in high computational costs leading to scalability limitations in practice. To
overcome these limitations, proposed methods rely on training GNNs in smaller
number of nodes, and then transferring the GNN to larger graphs. Even though
these methods are able to bound the difference between the output of the GNN
with different number of nodes, they do not provide guarantees against the
optimal GNN on the very large graph. In this paper, we propose to learn GNNs on
very large graphs by leveraging the limit object of a sequence of growing
graphs, the graphon. We propose to grow the size of the graph as we train, and
we show that our proposed methodology -- learning by transference -- converges
to a neighborhood of a first order stationary point on the graphon data. A
numerical experiment validates our proposed approach.
- Abstract(参考訳): グラフニューラルネットワーク(gnns)は、グラフ畳み込みを利用して、ネットワーク化されたデータの有意義なパターンを利用する。
行列の乗算に基づいて、畳み込みは計算コストが高く、実際はスケーラビリティの限界に繋がる。
これらの制限を克服するため、提案手法はより少ないノード数でGNNを訓練し、GNNをより大きなグラフに転送する。
これらの方法は、異なるノード数でgnnの出力間の差を限定することができるが、非常に大きなグラフ上の最適なgnnに対する保証を提供していない。
本稿では,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
我々は,学習中のグラフの大きさを増加させることを提案し,提案手法 -- 転移による学習 -- がグラフデータの1次静止点近傍に収束することを示す。
数値実験により提案手法を検証した。
関連論文リスト
- Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity [30.2972965458946]
グラフネットワーク(GNN)はノード分類などのグラフ学習問題に広く適用されている。
GNNの基盤となるグラフをより大きなサイズにスケールアップする場合、完全なグラフをトレーニングするか、あるいは完全なグラフの隣接とノードのメモリへの埋め込みを維持せざるを得ません。
本稿では,学習時間と記憶量がグラフサイズに比例して増加するスケッチベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-21T18:22:11Z) - Transferability of Graph Neural Networks using Graphon and Sampling Theories [0.0]
グラフニューラルネットワーク(GNN)は、さまざまなドメインでグラフベースの情報を処理するための強力なツールとなっている。
GNNの望ましい特性は転送可能性であり、トレーニングされたネットワークは、その正確性を再トレーニングすることなく、異なるグラフから情報を交換することができる。
我々は,2層グラファイトニューラルネットワーク(WNN)アーキテクチャを明示することにより,GNNへのグラファイトの適用に寄与する。
論文 参考訳(メタデータ) (2023-07-25T02:11:41Z) - KerGNNs: Interpretable Graph Neural Networks with Graph Kernels [14.421535610157093]
グラフニューラルネットワーク(GNN)は、下流グラフ関連タスクにおける最先端の手法となっている。
我々は新しいGNNフレームワークKernel Graph Neural Networks(KerGNNs)を提案する。
KerGNNはグラフカーネルをGNNのメッセージパッシングプロセスに統合する。
提案手法は,既存の最先端手法と比較して,競争性能が向上することを示す。
論文 参考訳(メタデータ) (2022-01-03T06:16:30Z) - Transferability Properties of Graph Neural Networks [125.71771240180654]
グラフニューラルネットワーク(GNN)は、中規模グラフでサポートされているデータから表現を学ぶのに成功している。
適度な大きさのグラフ上でGNNを訓練し、それらを大規模グラフに転送する問題について検討する。
その結果, (i) グラフサイズに応じて転送誤差が減少し, (ii) グラフフィルタは非線型性の散乱挙動によってGNNにおいて緩和されるような転送可能性-識別可能性トレードオフを有することがわかった。
論文 参考訳(メタデータ) (2021-12-09T00:08:09Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - Graphon Neural Networks and the Transferability of Graph Neural Networks [125.71771240180654]
グラフニューラルネットワーク(GNN)は、ネットワークデータから局所的な特徴を抽出するためにグラフ畳み込みに依存する。
我々は,GNNのリミットオブジェクトとしてグラフオンNNを導入し,GNNの出力とそのリミットグラフオン-NNとの差を証明した。
これにより、GNNの識別可能性と転送可能性のトレードオフが確立される。
論文 参考訳(メタデータ) (2020-06-05T16:41:08Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。