論文の概要: How Implicit Regularization of ReLU Neural Networks Characterizes the
Learned Function -- Part I: the 1-D Case of Two Layers with Random First
Layer
- arxiv url: http://arxiv.org/abs/1911.02903v4
- Date: Wed, 4 Oct 2023 15:07:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 23:01:40.051974
- Title: How Implicit Regularization of ReLU Neural Networks Characterizes the
Learned Function -- Part I: the 1-D Case of Two Layers with Random First
Layer
- Title(参考訳): ReLUニューラルネットワークが学習関数をいかに特徴付けるか -その1:ランダム第一層をもつ2層の1次元例-
- Authors: Jakob Heiss, Josef Teichmann, Hanna Wutte
- Abstract要約: 重みをランダムに選択し、終端層のみをトレーニングする1次元(浅)ReLUニューラルネットワークを考える。
そのようなネットワークにおいて、L2-正則化回帰は関数空間において、かなり一般の損失汎関数に対する推定の第2微分を正則化するために対応することを示す。
- 参考スコア(独自算出の注目度): 5.969858080492586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider one dimensional (shallow) ReLU neural networks in
which weights are chosen randomly and only the terminal layer is trained.
First, we mathematically show that for such networks L2-regularized regression
corresponds in function space to regularizing the estimate's second derivative
for fairly general loss functionals. For least squares regression, we show that
the trained network converges to the smooth spline interpolation of the
training data as the number of hidden nodes tends to infinity. Moreover, we
derive a novel correspondence between the early stopped gradient descent
(without any explicit regularization of the weights) and the smoothing spline
regression.
- Abstract(参考訳): 本稿では,重みをランダムに選択し,終端層のみをトレーニングする1次元(浅)ReLUニューラルネットワークについて考察する。
まず、そのようなネットワークのl2-正規化回帰が関数空間で対応することを数学的に示し、かなり一般の損失汎関数に対する推定の第2導関数を正則化する。
少なくとも二乗回帰では、トレーニングされたネットワークは、隠れノードの数が無限になる傾向があるため、トレーニングデータの滑らかなスプライン補間に収束する。
さらに, 初期停止勾配降下(重みの明示的な正則化を伴わない)と平滑化スプライン回帰との新たな対応を導出する。
関連論文リスト
- Benign Overfitting for Regression with Trained Two-Layer ReLU Networks [14.36840959836957]
本稿では,2層完全連結ニューラルネットワークを用いた最小二乗回帰問題と,勾配流によるReLU活性化関数について検討する。
最初の結果は一般化結果であり、基礎となる回帰関数や、それらが有界であること以外のノイズを仮定する必要はない。
論文 参考訳(メタデータ) (2024-10-08T16:54:23Z) - Implicit Bias of Gradient Descent for Two-layer ReLU and Leaky ReLU
Networks on Nearly-orthogonal Data [66.1211659120882]
好ましい性質を持つ解に対する暗黙の偏見は、勾配に基づく最適化によって訓練されたニューラルネットワークがうまく一般化できる重要な理由であると考えられている。
勾配流の暗黙バイアスは、均質ニューラルネットワーク(ReLUやリークReLUネットワークを含む)に対して広く研究されているが、勾配降下の暗黙バイアスは現在、滑らかなニューラルネットワークに対してのみ理解されている。
論文 参考訳(メタデータ) (2023-10-29T08:47:48Z) - The Implicit Bias of Minima Stability in Multivariate Shallow ReLU
Networks [53.95175206863992]
本研究では,2次損失を持つ1層多変量ReLUネットワークをトレーニングする際に,勾配勾配勾配が収束する解のタイプについて検討する。
我々は、浅いReLUネットワークが普遍近似器であるにもかかわらず、安定した浅層ネットワークは存在しないことを証明した。
論文 参考訳(メタデータ) (2023-06-30T09:17:39Z) - Improved Convergence Guarantees for Shallow Neural Networks [91.3755431537592]
勾配降下法により訓練された深度2ニューラルネットの収束度を世界最小とする。
我々のモデルには、二次損失関数による回帰、完全連結フィードフォワードアーキテクチャ、RelUアクティベーション、ガウスデータインスタンス、逆ラベルといった特徴がある。
彼らは、少なくとも我々のモデルでは、収束現象がNTK体制をはるかに超越していることを強く示唆している」。
論文 参考訳(メタデータ) (2022-12-05T14:47:52Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
本研究では,ReLUを活性化した2層完全連結ニューラルネットワークにおける勾配流と勾配降下の暗黙的バイアスについて検討する。
勾配流には、均一なニューラルネットワークに対する暗黙のバイアスに関する最近の研究を活用し、リーク的に勾配流が2つ以上のランクを持つニューラルネットワークを生成することを示す。
勾配降下は, ランダムな分散が十分小さい場合, 勾配降下の1ステップでネットワークのランクが劇的に低下し, トレーニング中もランクが小さくなることを示す。
論文 参考訳(メタデータ) (2022-10-13T15:09:54Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
勾配勾配勾配を用いた2層ReLUネットワークについて検討する。
SGDは単純な解に偏りがあることが示される。
また,データポイントと異なる場所で結び目が発生するという経験的証拠も提供する。
論文 参考訳(メタデータ) (2021-11-03T15:14:20Z) - Implicit Bias of Gradient Descent for Mean Squared Error Regression with
Two-Layer Wide Neural Networks [1.3706331473063877]
幅$n$浅いReLUネットワークをトレーニングする解は、トレーニングデータに適合する関数の$n-1/2$以内であることを示す。
また, トレーニング軌道はスムーズなスプラインの軌道によって捕捉され, 正規化強度は低下することを示した。
論文 参考訳(メタデータ) (2020-06-12T17:46:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。