Gamifying the Vehicle Routing Problem with Stochastic Requests
- URL: http://arxiv.org/abs/1911.05922v2
- Date: Mon, 23 Sep 2024 22:49:27 GMT
- Title: Gamifying the Vehicle Routing Problem with Stochastic Requests
- Authors: Nicholas D. Kullman, Nikita Dudorov, Jorge E. Mendoza, Martin Cousineau, Justin C. Goodson,
- Abstract summary: We consider the task of representing a classic logistics problem as a game. Then, we train agents to play it.
We show how various design features impact agents' performance, including perspective, field of view, and superhuman minimaps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Do you remember your first video game console? We remember ours. Decades ago, they provided hours of entertainment. Now, we have repurposed them to solve dynamic and stochastic optimization problems. With deep reinforcement learning methods posting superhuman performance on a wide range of Atari games, we consider the task of representing a classic logistics problem as a game. Then, we train agents to play it. We consider several game designs for the vehicle routing problem with stochastic requests. We show how various design features impact agents' performance, including perspective, field of view, and minimaps. With the right game design, general purpose Atari agents outperform optimization-based benchmarks, especially as problem size grows. Our work points to the representation of dynamic and stochastic optimization problems via games as a promising research direction.
Related papers
- People use fast, goal-directed simulation to reason about novel games [75.25089384921557]
We study how people reason about a range of simple but novel connect-n style board games.
We ask people to judge how fair and how fun the games are from very little experience.
arXiv Detail & Related papers (2024-07-19T07:59:04Z) - Imperfect-Recall Games: Equilibrium Concepts and Their Complexity [74.01381499760288]
We investigate optimal decision making under imperfect recall, that is, when an agent forgets information it once held before.
In the framework of extensive-form games with imperfect recall, we analyze the computational complexities of finding equilibria in multiplayer settings.
arXiv Detail & Related papers (2024-06-23T00:27:28Z) - Efficient Ground Vehicle Path Following in Game AI [77.34726150561087]
This paper presents an efficient path following solution for ground vehicles tailored to game AI.
The proposed path follower is evaluated through a variety of test scenarios in a first-person shooter game.
We achieved a 70% decrease in the total number of stuck events compared to an existing path following solution.
arXiv Detail & Related papers (2023-07-07T04:20:07Z) - RaidEnv: Exploring New Challenges in Automated Content Balancing for
Boss Raid Games [1.9851345691234763]
RaidEnv is a new game simulator that includes diverse and customizable content for the boss raid scenario in MMORPG games.
We introduce two evaluation metrics to provide guidance for AI in automatic content balancing.
arXiv Detail & Related papers (2023-07-04T12:07:25Z) - Preference-Aware Delivery Planning for Last-Mile Logistics [3.04585143845864]
We propose a novel hierarchical route with learnable parameters that combines the strength of both the optimization and machine learning approaches.
By using a real-world delivery dataset provided by the Amazon Last Mile Research Challenge, we demonstrate the importance of having both the optimization and the machine learning components.
arXiv Detail & Related papers (2023-03-08T02:10:59Z) - Multi-Game Decision Transformers [49.257185338595434]
We show that a single transformer-based model can play a suite of up to 46 Atari games simultaneously at close-to-human performance.
We compare several approaches in this multi-game setting, such as online and offline RL methods and behavioral cloning.
We find that our Multi-Game Decision Transformer models offer the best scalability and performance.
arXiv Detail & Related papers (2022-05-30T16:55:38Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
The Curiosity-Conditioned Proximal Trajectories (CCPT) method combines curiosity and imitation learning to train agents to explore.
We show how CCPT can explore complex environments, discover gameplay issues and design oversights in the process, and recognize and highlight them directly to game designers.
arXiv Detail & Related papers (2022-02-21T09:08:33Z) - Rinascimento: searching the behaviour space of Splendor [0.0]
This research is to map the behavioural space (BSpace) of a game by using a general method.
In particular, the use of event-value functions has generally shown a remarkable improvement in the coverage of the BSpace compared to agents based on classic score-based reward signals.
arXiv Detail & Related papers (2021-06-15T18:46:57Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
Turn-based strategy games like Roguelikes, for example, present unique challenges to Deep Reinforcement Learning (DRL)
We propose two network architectures to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions.
arXiv Detail & Related papers (2020-12-07T08:47:25Z) - Griddly: A platform for AI research in games [0.0]
We present Griddly as a new platform for Game AI research.
Griddly provides a unique combination of highly customizable games, different observer types and an efficient C++ core engine.
We present a series of baseline experiments to study the effect of different observation configurations and generalization ability of RL agents.
arXiv Detail & Related papers (2020-11-12T13:23:31Z) - Physically Embedded Planning Problems: New Challenges for Reinforcement
Learning [26.74526714574981]
Recent work in deep reinforcement learning (RL) has produced algorithms capable of mastering challenging games such as Go, chess, or shogi.
We introduce a set of physically embedded planning problems and make them publicly available.
We find that existing RL algorithms struggle to master even the simplest of their physically embedded counterparts.
arXiv Detail & Related papers (2020-09-11T16:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.