論文の概要: A Sub-sampled Tensor Method for Non-convex Optimization
- arxiv url: http://arxiv.org/abs/1911.10367v3
- Date: Sat, 15 Jul 2023 18:21:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 01:15:50.603483
- Title: A Sub-sampled Tensor Method for Non-convex Optimization
- Title(参考訳): 非凸最適化のための部分サンプリングテンソル法
- Authors: Aurelien Lucchi and Jonas Kohler
- Abstract要約: 有限サム構造を持つ滑らかで潜在的に有意な関数の局所最小値を求めるために, 4階正則化モデルを用いる手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a stochastic optimization method that uses a fourth-order
regularized model to find local minima of smooth and potentially non-convex
objective functions with a finite-sum structure. This algorithm uses
sub-sampled derivatives instead of exact quantities. The proposed approach is
shown to find an $(\epsilon_1,\epsilon_2,\epsilon_3)$-third-order critical
point in at most $\bigO\left(\max\left(\epsilon_1^{-4/3}, \epsilon_2^{-2},
\epsilon_3^{-4}\right)\right)$ iterations, thereby matching the rate of
deterministic approaches. In order to prove this result, we derive a novel
tensor concentration inequality for sums of tensors of any order that makes
explicit use of the finite-sum structure of the objective function.
- Abstract(参考訳): 本研究では, 4階正規化モデルを用いて, 有限サム構造を持つ滑らかで非凸な対象関数の局所最小値を求める確率最適化手法を提案する。
このアルゴリズムは正確な量ではなく、サブサンプリングされた微分を用いる。
提案手法は,最大で$\bigo\left(\max\left(\epsilon_1^{-4/3}, \epsilon_2^{-2}, \epsilon_3^{-4}\right)\right)$の3次臨界点を見いだし,決定論的アプローチの速度に一致することを示した。
この結果を証明するために、対象関数の有限サム構造を明示的に利用する任意の順序のテンソルの和に対して、新しいテンソル濃度不等式を導出する。
関連論文リスト
- Stochastic First-Order Methods with Non-smooth and Non-Euclidean Proximal Terms for Nonconvex High-Dimensional Stochastic Optimization [2.0657831823662574]
非問題が非問題である場合、一階法のサンプルは問題次元に線形に依存することがあるが、望ましくない問題に対するものである。
我々のアルゴリズムは距離を使って複雑さを見積もることができる。
MathO (log d) / EuM4。
DISFOM は $mathO (log d) / EuM4 を用いて分散を鋭くすることができることを示す。
論文 参考訳(メタデータ) (2024-06-27T18:38:42Z) - Cubic regularized subspace Newton for non-convex optimization [3.481985817302898]
我々は、ランダムな部分空間に定常正規化を適用すると解釈できる座標二階SSCNを解析する。
従来の一階法と比較して,大幅な高速化を示した。
論文 参考訳(メタデータ) (2024-06-24T14:20:02Z) - Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum [30.01198677588252]
1次アルゴリズムは、$varepsilon-stationary pointを見つけるのに少なくとも$mathcalO(varepsilonepsilon-4)$ complexityを必要とする。
本稿では,高効率な変動複雑性を生かした新しい運動量アルゴリズムを提案する。
本手法の有効性は実世界のデータセットを用いてロジスティック回帰を用いて検証する。
論文 参考訳(メタデータ) (2024-06-18T20:14:52Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
次元自由な次元自由アルゴリズムを得るにはランダム化が必要であることを示す。
我々のアルゴリズムは、ReLUネットワークを最適化する最初の決定論的次元自由アルゴリズムを得る。
論文 参考訳(メタデータ) (2023-02-16T13:57:19Z) - A Fully First-Order Method for Stochastic Bilevel Optimization [8.663726907303303]
一階勾配オラクルのみが利用できる場合、制約のない二段階最適化問題を考える。
完全一階近似法(F2SA)を提案し,その非漸近収束特性について検討する。
MNISTデータハイパクリーニング実験において,既存の2次手法よりも提案手法の実用性能が優れていることを示す。
論文 参考訳(メタデータ) (2023-01-26T05:34:21Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
本稿では、2つの異なる対象の一般円錐最適化を最小化する近似二階定常点(SOSP)について検討する。
特に、近似SOSPを見つけるためのNewton-CGベースの拡張共役法を提案する。
論文 参考訳(メタデータ) (2023-01-10T20:43:29Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
我々は,非制約のmin-max最適化問題のグローバルなサドル点を求めるために,不正確な正規化ニュートン型手法を提案し,解析する。
提案手法は有界集合内に留まるイテレートを生成し、その反復は制限関数の項で$O(epsilon-2/3)$内の$epsilon$-saddle点に収束することを示す。
論文 参考訳(メタデータ) (2022-10-23T21:24:37Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
この研究は、2-ワッサーシュタイン距離におけるサンプリング誤差の非同相解析のための一般的な枠組みを提供する。
我々の理論解析は数値実験によってさらに検証される。
論文 参考訳(メタデータ) (2021-09-08T18:00:05Z) - Second-Order Information in Non-Convex Stochastic Optimization: Power
and Limitations [54.42518331209581]
私たちは発見するアルゴリズムを見つけます。
epsilon$-approximate stationary point ($|nabla F(x)|le epsilon$) using
$(epsilon,gamma)$surimateランダムランダムポイント。
ここでの私たちの下限は、ノイズのないケースでも新規です。
論文 参考訳(メタデータ) (2020-06-24T04:41:43Z) - Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms [21.904012114713428]
第一のFが滑らかで第二のFが非滑らかで近似可能な3つの凸函数の和を考える。
このテンプレート問題には、画像処理や機械学習など、多くの応用がある。
この問題に対して PDDY と呼ぶ新しい原始双対アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-03T10:48:01Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
非滑らかで非滑らかな関数の定常点を見つけるための最初の非漸近解析を提供する。
特に、アダマール半微分可能函数(おそらく非滑らか関数の最大のクラス)について研究する。
論文 参考訳(メタデータ) (2020-02-10T23:23:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。