論文の概要: Quantum Algorithms for Non-smooth Non-convex Optimization
- arxiv url: http://arxiv.org/abs/2410.16189v1
- Date: Mon, 21 Oct 2024 16:52:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:16:35.219496
- Title: Quantum Algorithms for Non-smooth Non-convex Optimization
- Title(参考訳): 非平滑非凸最適化のための量子アルゴリズム
- Authors: Chengchang Liu, Chaowen Guan, Jianhao He, John C. S. Lui,
- Abstract要約: 本稿では、リプシッツ連続目的の$(,epsilon)$-Goldstein定常点を求める問題を考える。
代理オラクル関数に対するゼロ階量子推定器を構築する。
- 参考スコア(独自算出の注目度): 30.576546266390714
- License:
- Abstract: This paper considers the problem for finding the $(\delta,\epsilon)$-Goldstein stationary point of Lipschitz continuous objective, which is a rich function class to cover a great number of important applications. We construct a zeroth-order quantum estimator for the gradient of the smoothed surrogate. Based on such estimator, we propose a novel quantum algorithm that achieves a query complexity of $\tilde{\mathcal{O}}(d^{3/2}\delta^{-1}\epsilon^{-3})$ on the stochastic function value oracle, where $d$ is the dimension of the problem. We also enhance the query complexity to $\tilde{\mathcal{O}}(d^{3/2}\delta^{-1}\epsilon^{-7/3})$ by introducing a variance reduction variant. Our findings demonstrate the clear advantages of utilizing quantum techniques for non-convex non-smooth optimization, as they outperform the optimal classical methods on the dependency of $\epsilon$ by a factor of $\epsilon^{-2/3}$.
- Abstract(参考訳): 本稿では,リプシッツ連続目的量の$(\delta,\epsilon)$-Goldstein定常点を求める問題を考える。
滑らかなサロゲートの勾配に対するゼロ階量子推定器を構築する。
そのような推定値に基づいて,d$が問題の次元である確率関数値oracle上で,$\tilde{\mathcal{O}}(d^{3/2}\delta^{-1}\epsilon^{-3})$のクエリ複雑性を実現する新しい量子アルゴリズムを提案する。
また、分散還元変異を導入することにより、クエリの複雑さを$\tilde{\mathcal{O}}(d^{3/2}\delta^{-1}\epsilon^{-7/3})$に拡張する。
その結果,非凸非滑らかな最適化に量子技術を用いることの利点は,$\epsilon$の依存性において,$\epsilon^{-2/3}$の係数で最適古典的手法よりも優れていた。
関連論文リスト
- Quantum spectral method for gradient and Hessian estimation [4.193480001271463]
勾配降下は連続最適化問題を解くための最も基本的なアルゴリズムの1つである。
本稿では、クエリの複雑さを$widetildeO (1/varepsilon)$とすることで、その勾配の$varepsilon$-approximationを返す量子アルゴリズムを提案する。
また、ニュートン法の量子アナログを改善することを目的としたヘッセン推定のための2つの量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-04T11:03:48Z) - Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum [30.01198677588252]
1次アルゴリズムは、$varepsilon-stationary pointを見つけるのに少なくとも$mathcalO(varepsilonepsilon-4)$ complexityを必要とする。
本稿では,高効率な変動複雑性を生かした新しい運動量アルゴリズムを提案する。
本手法の有効性は実世界のデータセットを用いてロジスティック回帰を用いて検証する。
論文 参考訳(メタデータ) (2024-06-18T20:14:52Z) - Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss [16.91814406135565]
我々は量子アルゴリズムと下界の体系的な研究を行い、最大で$N$凸、リプシッツ関数を最小化する。
我々は、量子アルゴリズムが$tildeOmega(sqrtNepsilon-2/3)$クエリを1次量子オラクルに取らなければならないことを証明している。
論文 参考訳(メタデータ) (2024-02-20T06:23:36Z) - The Computational Complexity of Finding Stationary Points in Non-Convex Optimization [53.86485757442486]
近似定常点、すなわち勾配がほぼゼロの点を見つけることは、非順序だが滑らかな目的函数の計算問題である。
制約付き最適化における近似KKT点の発見は、制約なし最適化における近似定常点の発見に対して再現可能であるが、逆は不可能であることを示す。
論文 参考訳(メタデータ) (2023-10-13T14:52:46Z) - An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
リプシッツの目的の滑らかな点も凸点も生成しない点の複雑さについて検討する。
私たちの分析は単純だが強力だ。
Goldstein-subdifferential set, これは最近の進歩を可能にする。
非滑らかな非最適化
論文 参考訳(メタデータ) (2023-07-10T11:56:04Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
次元自由な次元自由アルゴリズムを得るにはランダム化が必要であることを示す。
我々のアルゴリズムは、ReLUネットワークを最適化する最初の決定論的次元自由アルゴリズムを得る。
論文 参考訳(メタデータ) (2023-02-16T13:57:19Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
本稿では、2つの異なる対象の一般円錐最適化を最小化する近似二階定常点(SOSP)について検討する。
特に、近似SOSPを見つけるためのNewton-CGベースの拡張共役法を提案する。
論文 参考訳(メタデータ) (2023-01-10T20:43:29Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
本稿では,BFG凸最適化(SCO: Reweighted Query (ReSQue) 推定ツールを提案する。
我々はSCOの並列およびプライベート設定における最先端の複雑さを実現するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-01-01T18:51:29Z) - Robustness of Quantum Algorithms for Nonconvex Optimization [7.191453718557392]
量子アルゴリズムは多対数あるいは指数的なクエリ数を持つ$epsilon$-SOSPを$dで見つけることができることを示す。
また、量子アルゴリズムが多対数または指数的なクエリ数を持つ$epsilon$-SOSPを$dで見つけることができる領域を特徴付ける。
論文 参考訳(メタデータ) (2022-12-05T19:10:32Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
本稿では,数種類のバイナリ最適化問題に対して,厳密な実行保証を有する量子アルゴリズムを提案する。
このアルゴリズムは、$n$非依存定数$c$に対して、時間で$O*(2(0.5-c)n)$の最適解を求める。
また、$k$-spinモデルからのランダムなインスタンスの多数と、完全に満足あるいはわずかにフラストレーションされた$k$-CSP式に対して、文 (a) がそうであることを示す。
論文 参考訳(メタデータ) (2022-12-03T02:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。