A simple baseline for domain adaptation using rotation prediction
- URL: http://arxiv.org/abs/1912.11903v1
- Date: Thu, 26 Dec 2019 17:32:04 GMT
- Title: A simple baseline for domain adaptation using rotation prediction
- Authors: Ajinkya Tejankar and Hamed Pirsiavash
- Abstract summary: The goal is to adapt a model trained in one domain to another domain with scarce annotated data.
We propose a simple yet effective method based on self-supervised learning.
Our simple method achieves state-of-the-art results on semi-supervised domain adaptation on DomainNet dataset.
- Score: 17.539027866457673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, domain adaptation has become a hot research area with lots of
applications. The goal is to adapt a model trained in one domain to another
domain with scarce annotated data. We propose a simple yet effective method
based on self-supervised learning that outperforms or is on par with most
state-of-the-art algorithms, e.g. adversarial domain adaptation. Our method
involves two phases: predicting random rotations (self-supervised) on the
target domain along with correct labels for the source domain (supervised), and
then using self-distillation on the target domain. Our simple method achieves
state-of-the-art results on semi-supervised domain adaptation on DomainNet
dataset.
Further, we observe that the unlabeled target datasets of popular domain
adaptation benchmarks do not contain any categories apart from testing
categories. We believe this introduces a bias that does not exist in many real
applications. We show that removing this bias from the unlabeled data results
in a large drop in performance of state-of-the-art methods, while our simple
method is relatively robust.
Related papers
- Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
Domain adaptation (DA) aims to transfer knowledge from a label-rich source domain to a related but label-scarce target domain.
We propose a novel contrastive learning method by processing low-confidence samples.
We evaluate the proposed method in both unsupervised and semi-supervised DA settings.
arXiv Detail & Related papers (2022-02-06T15:45:45Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - On Universal Black-Box Domain Adaptation [53.7611757926922]
We study an arguably least restrictive setting of domain adaptation in a sense of practical deployment.
Only the interface of source model is available to the target domain, and where the label-space relations between the two domains are allowed to be different and unknown.
We propose to unify them into a self-training framework, regularized by consistency of predictions in local neighborhoods of target samples.
arXiv Detail & Related papers (2021-04-10T02:21:09Z) - Adaptive Methods for Real-World Domain Generalization [32.030688845421594]
In our work, we investigate whether it is possible to leverage domain information from unseen test samples themselves.
We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model.
Our approach achieves state-of-the-art performance on various domain generalization benchmarks.
arXiv Detail & Related papers (2021-03-29T17:44:35Z) - Open-Set Hypothesis Transfer with Semantic Consistency [99.83813484934177]
We introduce a method that focuses on the semantic consistency under transformation of target data.
Our model first discovers confident predictions and performs classification with pseudo-labels.
As a result, unlabeled data can be classified into discriminative classes coincided with either source classes or unknown classes.
arXiv Detail & Related papers (2020-10-01T10:44:31Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation.
To cope with this limitation, automatically annotated data generated from graphic engines are used to train segmentation models.
We propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together.
arXiv Detail & Related papers (2020-04-16T15:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.