論文の概要: An Abstraction Model for Semantic Segmentation Algorithms
- arxiv url: http://arxiv.org/abs/1912.11995v2
- Date: Thu, 1 Dec 2022 23:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-10 00:04:07.200420
- Title: An Abstraction Model for Semantic Segmentation Algorithms
- Title(参考訳): 意味セグメンテーションアルゴリズムのための抽象モデル
- Authors: Reihaneh Teymoori, Zahra Nabizadeh, Nader Karimi, Shadrokh Samavi
- Abstract要約: セマンティックセグメンテーションは、がん検出、ロボット支援手術、衛星画像解析、自動運転車など、多くのタスクで使用されている。
本稿では,セマンティックセグメンテーションの抽象化モデルを用いて,その分野を包括的に把握する。
異なるアプローチを比較し,各メソッドの動作における4つの抽象ブロックの重要性を解析する。
- 参考スコア(独自算出の注目度): 9.561123408923489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation classifies each pixel in the image. Due to its
advantages, semantic segmentation is used in many tasks, such as cancer
detection, robot-assisted surgery, satellite image analysis, and self-driving
cars. Accuracy and efficiency are the two crucial goals for this purpose, and
several state-of-the-art neural networks exist. By employing different
techniques, new solutions have been presented in each method to increase
efficiency and accuracy and reduce costs. However, the diversity of the
implemented approaches for semantic segmentation makes it difficult for
researchers to achieve a comprehensive view of the field. In this paper, an
abstraction model for semantic segmentation offers a comprehensive view of the
field. The proposed framework consists of four general blocks that cover the
operation of the majority of semantic segmentation methods. We also compare
different approaches and analyze each of the four abstraction blocks'
importance in each method's operation.
- Abstract(参考訳): セマンティックセグメンテーションは画像の各ピクセルを分類する。
その利点により、セマンティックセグメンテーションは、がん検出、ロボット支援手術、衛星画像解析、自動運転車など、多くのタスクで使用されている。
この目的のためには、正確性と効率性が2つの重要な目標であり、最先端のニューラルネットワークがいくつか存在する。
異なる技術を用いることで、効率と正確性を高め、コストを削減するために、それぞれの方法で新しいソリューションが提示されている。
しかしながら、セマンティクスセグメンテーションのための実装されたアプローチの多様性は、研究者がフィールドの包括的な視点を達成するのを困難にしている。
本稿では,セマンティックセグメンテーションの抽象化モデルを用いて,その分野を包括的に把握する。
提案するフレームワークは,意味的セグメンテーション法の大部分を網羅する4つの汎用ブロックから構成される。
また、異なるアプローチを比較し、各メソッドの操作における4つの抽象ブロックの重要性を分析する。
関連論文リスト
- Pixel-Level Domain Adaptation: A New Perspective for Enhancing Weakly Supervised Semantic Segmentation [13.948425538725138]
画素単位の領域不変性を学習する際のモデルとして,Pixel-Level Domain Adaptation (PLDA)法を提案する。
我々は,幅広い環境下でのアプローチの有効性を実験的に実証した。
論文 参考訳(メタデータ) (2024-08-04T14:14:54Z) - Frequency-based Matcher for Long-tailed Semantic Segmentation [22.199174076366003]
我々は、比較的未探索なタスク設定、長い尾のセマンティックセマンティックセグメンテーション(LTSS)に焦点を当てる。
本稿では,セマンティックセグメンテーション手法と長鎖解の性能を示すために,二値評価システムを提案し,LTSSベンチマークを構築した。
また,1対1のマッチングによって過剰な圧縮問題を解決する周波数ベースのマーカであるLTSSを改善するトランスフォーマーベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-06T09:57:56Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
航空画像のセグメンテーションにはいくつかの独特な課題があり、中でも最も重要なものは前景と背景のアンバランスにある。
本稿では,階層的なセグメンテーション手法を採用し,マルチスケール表現を適応的に活用するAdaptive Focus Framework (AF$)を提案する。
AF$は、広く使われている3つの航空ベンチマークの精度を大幅に改善した。
論文 参考訳(メタデータ) (2022-02-18T10:14:45Z) - A Unified Architecture of Semantic Segmentation and Hierarchical
Generative Adversarial Networks for Expression Manipulation [52.911307452212256]
セマンティックセグメンテーションと階層的GANの統一アーキテクチャを開発する。
我々のフレームワークのユニークな利点は、将来的なセマンティックセグメンテーションネットワーク条件を生成モデルに渡すことである。
我々は,AffectNetとRaFDの2つの難解な表情翻訳ベンチマークとセマンティックセグメンテーションベンチマークであるCelebAMask-HQについて評価を行った。
論文 参考訳(メタデータ) (2021-12-08T22:06:31Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
InMARS(Information Maximization and Adrial Regularization)と呼ばれる新しい教師なしセマンティックセマンティックセマンティクス手法を提案する。
シーンを知覚群に解析する人間の知覚に触発され、提案手法はまず、入力画像を意味のある領域(スーパーピクセルとも呼ばれる)に分割する。
次に、相互情報最大化(Multual-Information-Maximization)と、それらの領域を意味論的に意味のあるクラスにクラスタ化するための敵対的トレーニング戦略を利用する。
提案手法は2つの非教師付きセマンティックセグメンテーションデータセット上での最先端性能を実現することを実証した。
論文 参考訳(メタデータ) (2021-07-01T18:36:27Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Visual Object Tracking by Segmentation with Graph Convolutional Network [7.729569666460712]
グラフ畳み込みネットワーク(GCN)モデルを用いて,スーパーピクセルベースのオブジェクトトラッキングを提案する。
提案モデルは,i)ラベル線形予測とi)各スーパーピクセルの構造認識特徴情報を統合した,汎用的なエンドツーエンドフレームワークを提供する。
論文 参考訳(メタデータ) (2020-09-05T12:43:21Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
本稿では,プロトタイプ表現に基づく新規な数ショットセマンティックセマンティックセマンティクスフレームワークを提案する。
私たちのキーとなるアイデアは、全体論的なクラス表現を、部分認識型プロトタイプのセットに分解することです。
提案する部分認識型プロトタイプを生成・拡張する新しいグラフニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-07-13T11:03:09Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - Towards Interpretable Semantic Segmentation via Gradient-weighted Class
Activation Mapping [71.91734471596432]
本稿では,セマンティックセグメンテーションの解法としてSEG-GRAD-CAMを提案する。
本手法は,各画素のセグメンテーションに対する関連性を示すヒートマップを作成するために局所的に適用された広く使われているGrad-CAM法の拡張である。
論文 参考訳(メタデータ) (2020-02-26T12:32:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。