論文の概要: 3D Sensing of a Moving Object with a Nodding 2D LIDAR and Reconfigurable
Mirrors
- arxiv url: http://arxiv.org/abs/1912.13461v1
- Date: Fri, 27 Dec 2019 10:22:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 22:44:59.968637
- Title: 3D Sensing of a Moving Object with a Nodding 2D LIDAR and Reconfigurable
Mirrors
- Title(参考訳): 2次元LIDARと再構成可能なミラーを用いた移動物体の3次元センシング
- Authors: Anindya Harchowdhury, Lindsay Kleeman, Leena Vachhani
- Abstract要約: 従来の2Dライダーの作業は、低コストで高品質な3D深度情報を提供する。
このセンサによって生成された光データは、不確実な環境下での移動物体の特性を理解する上での課題となる。
本稿では,ノディングライダーの新たな設計を提案するが,光学鏡の集合を用いてセンサの視野を制限するという観点から,動的再構成性を提供する。
- 参考スコア(独自算出の注目度): 4.604003661048267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perception in 3D has become standard practice for a large part of robotics
applications. High quality 3D perception is costly. Our previous work on a
nodding 2D Lidar provides high quality 3D depth information with low cost, but
the sparse data generated by this sensor poses challenges in understanding the
characteristics of moving objects within an uncertain environment. This paper
proposes a novel design of the nodding Lidar but provides dynamic
reconfigurability in terms of limiting the field of view of the sensor using a
set of optical mirrors. It not only provides denser scans, but it also achieves
a three times higher scan update rate. Additionally, we propose a novel
calibration mechanism for this sensor and prove its effectiveness for dynamic
object detection and tracking.
- Abstract(参考訳): 3dの認識は、ロボティクスのアプリケーションの大部分で標準的なプラクティスになっている。
高品質な3D認識は費用がかかる。
従来のNodding 2D Lidarでは,高品質な3次元深度情報を低コストで提供していたが,このセンサによって生成されたスパースデータは,不確実な環境下での移動物体の特性を理解する上での課題となっている。
本稿では,ノディングライダーの新たな設計を提案するが,光学鏡の集合を用いてセンサの視野を制限するという観点から,動的再構成性を提供する。
より密度の高いスキャンを提供するだけでなく、スキャン更新率も3倍に向上する。
さらに,このセンサのキャリブレーション機構を新たに提案し,動的物体検出と追跡に有効であることを示す。
関連論文リスト
- SpatialTracker: Tracking Any 2D Pixels in 3D Space [71.58016288648447]
本稿では,画像投影による問題点を軽減するために,3次元空間における点軌道の推定を提案する。
この手法はSpatialTrackerと呼ばれ、2Dピクセルをモノクロ深度推定器を用いて3Dにリフトする。
3Dでのトラッキングにより、ピクセルを異なる剛性部分にクラスタ化する剛性埋め込みを同時に学習しながら、ARAP(as-rigid-as-possible)制約を活用することができます。
論文 参考訳(メタデータ) (2024-04-05T17:59:25Z) - Joint 3D Shape and Motion Estimation from Rolling Shutter Light-Field
Images [2.0277446818410994]
本研究では,ローリングシャッターセンサを備えた光界カメラで撮影した1枚の画像からシーンを3次元再構成する手法を提案する。
本手法は、光場に存在する3次元情報キューと、ローリングシャッター効果によって提供される動き情報を利用する。
本稿では,このセンサの撮像プロセスの汎用モデルと再投射誤差を最小化する2段階アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-02T15:08:18Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
本稿では,3次元視覚タスクにおける現在のデータセットの限界について,精度,サイズ,リアリズム,および光度に挑戦する対象に対する適切な画像モダリティの観点から検討する。
既存の3次元認識と6次元オブジェクトポーズデータセットを強化する新しいアノテーションと取得パイプラインを提案する。
論文 参考訳(メタデータ) (2023-08-21T10:38:32Z) - OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic
Perception, Reconstruction and Generation [107.71752592196138]
OmniObject3Dを提案する。OmniObject3Dは,大規模で高品質な3Dオブジェクトを持つ大語彙の3Dオブジェクトデータセットである。
190のカテゴリーで6,000のスキャン対象からなり、一般的な2Dデータセットと共通クラスを共有する。
それぞれの3Dオブジェクトは、2Dと3Dの両方のセンサーでキャプチャされ、テクスチャメッシュ、ポイントクラウド、マルチビューレンダリング画像、複数の実写ビデオを提供する。
論文 参考訳(メタデータ) (2023-01-18T18:14:18Z) - ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3D Object
Detection [20.44294678711783]
我々は,カメラ画像とLiDAR点雲のマルチスケール特徴を段階的に融合させることにより,センサ間差を狭める新しい3ODパラダイムであるImLiDARを提案する。
まず,マルチスケール画像とポイント特徴の最良の組み合わせを目的とした,クロスセンサ動的メッセージ伝搬モジュールを提案する。
第二に、効率的なセットベース検出器を設計できるような、直接セット予測問題を提起する。
論文 参考訳(メタデータ) (2022-11-17T13:31:23Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
生のLiDARスキャンにおける物体の点雲は、通常スパースで不完全であるため、正確な目標固有検出を行うのは簡単ではない。
DMTは、複雑な3D検出器の使用を完全に除去する3Dトラッキングネットワークである。
論文 参考訳(メタデータ) (2022-03-08T17:49:07Z) - Gated3D: Monocular 3D Object Detection From Temporal Illumination Cues [28.806932489163888]
低コストな単分子ゲート型画像処理装置から時間的照度を利用した新しい3次元物体検出法を提案する。
提案手法は,1万km以上の運転データから得られたゲート画像を含む新しい3次元検出データセットを用いて評価する。
論文 参考訳(メタデータ) (2021-02-06T16:06:51Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
本稿では,LIDARとカメラを併用して高精度な位置検出を実現する3Dオブジェクト検出器を提案する。
我々は,連続畳み込みを利用して画像とlidar特徴マップを異なるレベルの解像度で融合する,エンドツーエンド学習可能なアーキテクチャを設計した。
論文 参考訳(メタデータ) (2020-12-20T18:43:41Z) - RoIFusion: 3D Object Detection from LiDAR and Vision [7.878027048763662]
本稿では,3次元関心領域(RoI)の集合を点雲から対応する画像の2次元ロIに投影することで,新しい融合アルゴリズムを提案する。
提案手法は,KITTI 3Dオブジェクト検出課題ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2020-09-09T20:23:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。