論文の概要: PAC Confidence Sets for Deep Neural Networks via Calibrated Prediction
- arxiv url: http://arxiv.org/abs/2001.00106v2
- Date: Sat, 15 Feb 2020 19:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 20:23:55.413654
- Title: PAC Confidence Sets for Deep Neural Networks via Calibrated Prediction
- Title(参考訳): 校正予測による深層ニューラルネットワークのpac信頼度設定
- Authors: Sangdon Park, Osbert Bastani, Nikolai Matni, Insup Lee
- Abstract要約: PAC保証付きディープニューラルネットワークのための信頼セットを構築するために、校正予測と学習理論からのバウンダリを組み合わせたアルゴリズムを提案する。
本稿では,視覚オブジェクト追跡モデルであるResNet for ImageNetと,半チーター強化学習問題に対する動的モデルを用いてPAC信頼セットを構築する方法を紹介する。
- 参考スコア(独自算出の注目度): 26.814476924045536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an algorithm combining calibrated prediction and generalization
bounds from learning theory to construct confidence sets for deep neural
networks with PAC guarantees---i.e., the confidence set for a given input
contains the true label with high probability. We demonstrate how our approach
can be used to construct PAC confidence sets on ResNet for ImageNet, a visual
object tracking model, and a dynamics model for the half-cheetah reinforcement
learning problem.
- Abstract(参考訳): 本稿では,学習理論からの校正予測と一般化境界を組み合わせたアルゴリズムを提案し,pac保証付き深層ニューラルネットワークの信頼度セットを構築する。
本稿では,視覚オブジェクト追跡モデルであるResNet for ImageNetと,半チーター強化学習問題に対する動的モデルを用いてPAC信頼セットを構築する方法を紹介する。
関連論文リスト
- Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness [47.9744734181236]
我々は、ディープニューラルネットワーク(DNN)の敵攻撃に対する堅牢性を証明するために、リプシッツ連続性の概念を探求する。
本稿では,入力領域を制約範囲に再マップし,リプシッツ定数を低減し,ロバスト性を高める新しいアルゴリズムを提案する。
本手法は,ロバストベンチリーダーボード上のCIFAR10,CIFAR100,ImageNetデータセットに対して,最も堅牢な精度を実現する。
論文 参考訳(メタデータ) (2024-06-28T03:10:36Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Demystify Optimization and Generalization of Over-parameterized
PAC-Bayesian Learning [20.295960197612743]
PAC-Bayesianは、後部分布における仮説の重み付け平均としてトレーニングエラーを表現できる分析フレームワークである。
PAC-Bayes学習を適用すると、収束結果がカーネルリッジ回帰の解に一致することを示す。
我々はさらに、非確率的ニューラルネットワークに対するラデマッハ複雑性に基づくバウンダリを改良した、均一なPAC-ベイズ一般化バウンダリを特徴付ける。
論文 参考訳(メタデータ) (2022-02-04T03:49:11Z) - Robust Learning via Ensemble Density Propagation in Deep Neural Networks [6.0122901245834015]
本稿では,ディープニューラルネットワーク(DNN)の層を通した密度伝搬の問題を定式化し,それをエンサンブル密度伝搬法を用いて解く。
MNISTとCIFAR-10データセットを用いた実験は、ランダムノイズや敵攻撃に対するトレーニングモデルの堅牢性を大幅に改善したことを示している。
論文 参考訳(メタデータ) (2021-11-10T21:26:08Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Certification of Iterative Predictions in Bayesian Neural Networks [79.15007746660211]
我々は、BNNモデルの軌道が与えられた状態に到達する確率に対して、安全でない状態の集合を避けながら低い境界を計算する。
我々は、制御と強化学習の文脈において、下限を用いて、与えられた制御ポリシーの安全性保証を提供する。
論文 参考訳(メタデータ) (2021-05-21T05:23:57Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - PAC Confidence Predictions for Deep Neural Network Classifiers [28.61937254015157]
ディープニューラルネットワーク(DNN)を安全クリティカルな環境でデプロイする上で重要な課題は、その不確実性を定量化する厳密な方法を提供することだ。
証明可能な正当性保証を備えたDNNに対して,予測された分類信頼度を構築するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-02T04:09:17Z) - Trusted Confidence Bounds for Learning Enabled Cyber-Physical Systems [2.1320960069210484]
インダクティブ・コンフォーマル予測(ICP)に基づく信頼度境界の計算手法を提案する。
我々はTriplet Networkアーキテクチャをトレーニングし、トレーニングデータセットにおけるテスト例とサンプルの類似性を推定するために使用できる入力データの表現を学習する。
次に、これらの表現を用いて、三重項で使用されるニューラルネットワークアーキテクチャに基づく分類器からセット予測の信頼性を推定する。
論文 参考訳(メタデータ) (2020-03-11T04:31:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。