論文の概要: Operationally meaningful representations of physical systems in neural
networks
- arxiv url: http://arxiv.org/abs/2001.00593v1
- Date: Thu, 2 Jan 2020 19:01:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 03:45:41.575334
- Title: Operationally meaningful representations of physical systems in neural
networks
- Title(参考訳): ニューラルネットワークにおける物理系の操作意味表現
- Authors: Hendrik Poulsen Nautrup, Tony Metger, Raban Iten, Sofiene Jerbi, Lea
M. Trenkwalder, Henrik Wilming, Hans J. Briegel, Renato Renner
- Abstract要約: 本稿では、物理的システムの異なる側面を扱うエージェントが、相互に可能な限り効率的に関連情報を伝達できるように設計されたニューラルネットワークアーキテクチャを提案する。
これは、異なる実験環境で物理システムに関するステートメントを作成するのに役立つ異なるパラメータを分離する表現を生成する。
- 参考スコア(独自算出の注目度): 4.192302677744796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To make progress in science, we often build abstract representations of
physical systems that meaningfully encode information about the systems. The
representations learnt by most current machine learning techniques reflect
statistical structure present in the training data; however, these methods do
not allow us to specify explicit and operationally meaningful requirements on
the representation. Here, we present a neural network architecture based on the
notion that agents dealing with different aspects of a physical system should
be able to communicate relevant information as efficiently as possible to one
another. This produces representations that separate different parameters which
are useful for making statements about the physical system in different
experimental settings. We present examples involving both classical and quantum
physics. For instance, our architecture finds a compact representation of an
arbitrary two-qubit system that separates local parameters from parameters
describing quantum correlations. We further show that this method can be
combined with reinforcement learning to enable representation learning within
interactive scenarios where agents need to explore experimental settings to
identify relevant variables.
- Abstract(参考訳): 科学の発展のために、私たちはしばしば、システムに関する情報を有意義にエンコードする物理システムの抽象表現を構築します。
現在の機械学習技術で学んだ表現は、トレーニングデータに存在する統計的構造を反映しているが、これらの方法では、表現に対して明示的かつ運用上意味のある要求を指定できない。
本稿では,物理システムの異なる側面を扱うエージェントが,相互に可能な限り効率的に関連情報を伝達できる,という概念に基づくニューラルネットワークアーキテクチャを提案する。
これは、異なる実験環境で物理システムに関するステートメントを作成するのに役立つ異なるパラメータを分離する表現を生成する。
古典物理学と量子物理学の両方を例に挙げる。
例えば、我々のアーキテクチャは、量子相関を記述するパラメータから局所パラメータを分離する任意の2量子ビット系のコンパクト表現を見つける。
さらに,本手法を強化学習と組み合わせることで,エージェントが関連する変数を識別するために実験的な設定を探索する必要がある対話シナリオにおける表現学習を可能にすることを示す。
関連論文リスト
- Interpretable Meta-Learning of Physical Systems [4.343110120255532]
最近のメタラーニング手法はブラックボックスニューラルネットワークに依存しており、計算コストが高く、解釈可能性も限られている。
我々は,学習課題に対するアフィン構造を持つ,より単純な学習モデルを用いて,マルチ環境の一般化を実現することができると論じる。
本稿では,物理系の最先端アルゴリズムと比較することにより,競合一般化性能と計算コストの低さを実証する。
論文 参考訳(メタデータ) (2023-12-01T10:18:50Z) - Do Neural Networks Trained with Topological Features Learn Different
Internal Representations? [1.418465438044804]
本研究では、トポロジカルな特徴で訓練されたモデルが、元の生データで学習したモデルと根本的に異なるデータの内部表現を学習するかどうかを検討する。
構造的には、トポロジカルな特徴に基づいて訓練・評価されたモデルの隠れ表現は、対応する生データに基づいて訓練・評価されたモデルと大きく異なることがわかった。
これは、生データに基づいてトレーニングされたニューラルネットワークが、予測を行う過程で限られたトポロジ的特徴を抽出することを意味すると推測する。
論文 参考訳(メタデータ) (2022-11-14T19:19:04Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - Physical Modeling using Recurrent Neural Networks with Fast
Convolutional Layers [1.7013938542585922]
いくつかの新しい繰り返しニューラルネットワーク構造を記述し、それらがモーダル手法の拡張とみなすことができることを示す。
概念実証として、3つの物理系の合成データを生成し、提案したネットワーク構造をこのデータを用いてトレーニングし、これらのシステムの挙動を再現できることを示す。
論文 参考訳(メタデータ) (2022-04-21T14:22:44Z) - Learning Dynamics and Structure of Complex Systems Using Graph Neural
Networks [13.509027957413409]
我々は、非線形力学系の例から時系列に適合するようにグラフニューラルネットワークを訓練した。
学習した表現とモデルコンポーネントの簡単な解釈を見出した。
我々は,信念伝達における統計的相互作用と,それに対応する学習ネットワークのパラメータ間のグラフトランスレータの同定に成功した。
論文 参考訳(メタデータ) (2022-02-22T15:58:16Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Discrete-Valued Neural Communication [85.3675647398994]
コンポーネント間で伝達される情報を離散表現に制限することは、有益なボトルネックであることを示す。
個人は「猫」が特定の経験に基づいて何であるかについて異なる理解を持っているが、共有された離散トークンは、個人間のコミュニケーションが内部表現の個人差によって切り離されることを可能にする。
我々は、量子化機構をベクトル量子化変分オートコーダから共有符号ブックによる多頭部離散化に拡張し、離散値ニューラル通信に利用する。
論文 参考訳(メタデータ) (2021-07-06T03:09:25Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - A Framework for Learning Invariant Physical Relations in Multimodal
Sensory Processing [0.0]
我々は、教師なしの方法で、知覚的手がかり間の関係を学習できる新しいニューラルネットワークアーキテクチャを設計する。
低次元知覚データにおける任意の非線形関係を学習する際のコアシステム機能について述べる。
我々は、標準的なRGBカメラフレームから物理量間の関係を学習する現実世界の学習問題を通してこれを実証する。
論文 参考訳(メタデータ) (2020-06-30T08:42:48Z) - End-to-End Models for the Analysis of System 1 and System 2 Interactions
based on Eye-Tracking Data [99.00520068425759]
本稿では,よく知られたStroopテストの視覚的修正版において,様々なタスクと潜在的な競合事象を特定するための計算手法を提案する。
統計的分析により、選択された変数は、異なるシナリオにおける注意負荷の変動を特徴付けることができることが示された。
機械学習技術は,異なるタスクを分類精度良く区別できることを示す。
論文 参考訳(メタデータ) (2020-02-03T17:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。