論文の概要: Learning Dynamics and Structure of Complex Systems Using Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2202.10996v1
- Date: Tue, 22 Feb 2022 15:58:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-23 18:05:44.608417
- Title: Learning Dynamics and Structure of Complex Systems Using Graph Neural
Networks
- Title(参考訳): グラフニューラルネットワークを用いた複雑システムの学習ダイナミクスと構造
- Authors: Zhe Li, Andreas S. Tolias, Xaq Pitkow
- Abstract要約: 我々は、非線形力学系の例から時系列に適合するようにグラフニューラルネットワークを訓練した。
学習した表現とモデルコンポーネントの簡単な解釈を見出した。
我々は,信念伝達における統計的相互作用と,それに対応する学習ネットワークのパラメータ間のグラフトランスレータの同定に成功した。
- 参考スコア(独自算出の注目度): 13.509027957413409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many complex systems are composed of interacting parts, and the underlying
laws are usually simple and universal. While graph neural networks provide a
useful relational inductive bias for modeling such systems, generalization to
new system instances of the same type is less studied. In this work we trained
graph neural networks to fit time series from an example nonlinear dynamical
system, the belief propagation algorithm. We found simple interpretations of
the learned representation and model components, and they are consistent with
core properties of the probabilistic inference algorithm. We successfully
identified a `graph translator' between the statistical interactions in belief
propagation and parameters of the corresponding trained network, and showed
that it enables two types of novel generalization: to recover the underlying
structure of a new system instance based solely on time series observations, or
to construct a new network from this structure directly. Our results
demonstrated a path towards understanding both dynamics and structure of a
complex system and how such understanding can be used for generalization.
- Abstract(参考訳): 多くの複雑な系は相互作用する部分で構成され、基礎となる法則は通常単純で普遍的である。
グラフニューラルネットワークはそのようなシステムのモデリングに有用なリレーショナル帰納バイアスを提供するが、同じタイプの新しいシステムインスタンスへの一般化はあまり研究されていない。
本研究では,非線形力学系の例である信念伝達アルゴリズムから時系列に適合するようにグラフニューラルネットワークを訓練した。
その結果,学習表現とモデル成分の単純な解釈が得られ,確率的推論アルゴリズムのコア特性と一致した。
我々は,信念伝達における統計的相互作用とそれに対応する訓練ネットワークのパラメータとの「グラフトランスレータ」の同定に成功し,時系列観測のみに基づく新しいシステムインスタンスの基盤構造を復元する,あるいは,この構造から直接新しいネットワークを構築する,という2つの新しい一般化を可能にした。
その結果、複雑なシステムのダイナミクスと構造の両方を理解するための道筋が示され、そのような理解が一般化にどのように役立つかが示された。
関連論文リスト
- Generalization emerges from local optimization in a self-organized learning network [0.0]
我々は,グローバルなエラー関数に頼ることなく,局所最適化ルールのみによって駆動される,教師付き学習ネットワーク構築のための新しいパラダイムを設計・分析する。
我々のネットワークは、ルックアップテーブルの形で、ノードに新しい知識を正確かつ瞬時に保存する。
本稿では,学習例数が十分に大きくなると,アルゴリズムによって生成されたネットワークが完全な一般化状態に体系的に到達する,分類タスクの多くの例を示す。
我々は状態変化のダイナミクスについて報告し、それが突然であり、従来の学習ネットワークですでに観察されている現象である1次相転移の特徴を持つことを示す。
論文 参考訳(メタデータ) (2024-10-03T15:32:08Z) - On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
ニューラルネットワークがそのようなシステムを学ぶ際に提供するアーキテクチャの規則化について論じる。
動的システムをモデル化する際の複数の問題を解決するために,レイヤ数が少ない単純な座標ネットワークが利用できることを示す。
論文 参考訳(メタデータ) (2023-03-10T06:21:24Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
本稿では,情報フローの経路が学習力学に与える影響をスキーマ化するGated Deep Linear Networkフレームワークを紹介する。
正確な還元と、特定の場合において、学習のダイナミクスに対する正確な解が導出されます。
我々の研究は、ニューラルネットワークと学習に関する一般的な仮説を生み出し、より複雑なアーキテクチャの設計を理解するための数学的アプローチを提供する。
論文 参考訳(メタデータ) (2022-07-21T12:01:03Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
合成ネットワーク一般化(CoRelNet)と呼ばれる類似度分布スコアに基づく簡単なアーキテクチャを導入する。
単純なアーキテクチャの選択は、分布外一般化において既存のモデルより優れていることが分かる。
論文 参考訳(メタデータ) (2022-06-09T16:24:01Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - Investigating the Compositional Structure Of Deep Neural Networks [1.8899300124593645]
本稿では,一方向線形活性化関数の構成構造に基づく新しい理論的枠組みを提案する。
予測ラベルと予測に使用する特定の(線形)変換の両方に関して、入力データのインスタンスを特徴付けることができる。
MNISTデータセットの予備テストでは、ニューラルネットワークの内部表現における類似性に関して、入力インスタンスをグループ化することが可能である。
論文 参考訳(メタデータ) (2020-02-17T14:16:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。