A subradiant optical mirror formed by a single structured atomic layer
- URL: http://arxiv.org/abs/2001.00795v1
- Date: Fri, 3 Jan 2020 11:55:05 GMT
- Title: A subradiant optical mirror formed by a single structured atomic layer
- Authors: Jun Rui, David Wei, Antonio Rubio-Abadal, Simon Hollerith, Johannes
Zeiher, Dan M. Stamper-Kurn, Christian Gross, Immanuel Bloch
- Abstract summary: We report on the direct observation of the cooperative subradiant response of a two-dimensional (2d) square array of atoms in an optical lattice.
We show that the array acts as an efficient mirror formed by only a single monolayer of a few hundred atoms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient and versatile interfaces for the interaction of light with matter
are an essential cornerstone for quantum science. A fundamentally new avenue of
controlling light-matter interactions has been recently proposed based on the
rich interplay of photon-mediated dipole-dipole interactions in structured
subwavelength arrays of quantum emitters. Here we report on the direct
observation of the cooperative subradiant response of a two-dimensional (2d)
square array of atoms in an optical lattice. We observe a spectral narrowing of
the collective atomic response well below the quantum-limited decay of
individual atoms into free space. Through spatially resolved spectroscopic
measurements, we show that the array acts as an efficient mirror formed by only
a single monolayer of a few hundred atoms. By tuning the atom density in the
array and by changing the ordering of the particles, we are able to control the
cooperative response of the array and elucidate the interplay of spatial order
and dipolar interactions for the collective properties of the ensemble. Bloch
oscillations of the atoms out of the array enable us to dynamically control the
reflectivity of the atomic mirror. Our work demonstrates efficient optical
metamaterial engineering based on structured ensembles of atoms and paves the
way towards the controlled many-body physics with light and novel light-matter
interfaces at the single quantum level.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Cavity dark mode mediated by atom array without atomic scattering loss [6.344873011535255]
We observe a cavity dark mode, where the standing-wave nodes are dynamically locked to the positions of the atoms.
The dark mode is decoupled from the atoms, protecting the system from dissipation through atomic scattering.
We impart an arbitrary large phase shift on the converted optical fields by translating the atom array.
arXiv Detail & Related papers (2024-10-26T02:27:55Z) - Cooperative quantum-optical planar arrays of atoms [0.0]
We describe theoretical methods commonly employed to analyze the cooperative responses of atomic arrays.
We explore some recent developments and potential future applications of planar arrays as versatile quantum interfaces between light and matter.
arXiv Detail & Related papers (2023-09-15T15:46:33Z) - A subwavelength atomic array switched by a single Rydberg atom [0.0]
Enhancing light-matter coupling at the level of single quanta is essential for numerous applications in quantum science.
Cooperative optical response of subwavelength atomic arrays has been found to open new pathways for such strong light-matter couplings.
We demonstrate spatial control over the optical response of an atomically thin mirror formed by a subwavelength array of atoms in free space.
arXiv Detail & Related papers (2022-07-19T16:27:44Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Quantum single-photon control, storage, and entanglement generation with
planar atomic arrays [0.0]
We show how to achieve quantum control of an incident single-photon pulse by engineering a two-dimensional atomic array.
Control is achieved by controlling classically or quantum mechanically the ac Stark shifts of the atomic levels.
We illustrate the control by manipulating the phase, phase superposition, polarization, and direction of a transmitted or reflected photon.
arXiv Detail & Related papers (2021-08-09T10:23:33Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Single collective excitation of an atomic array trapped along a
waveguide: a study of cooperative emission for different atomic chain
configurations [0.0]
Ordered atomic arrays trapped in the vicinity of nanoscale waveguides offer original light-matter interfaces.
We study the decay dynamics of a single collective atomic excitation coupled to a waveguide in different configurations.
arXiv Detail & Related papers (2021-01-14T00:01:06Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.