Cooperative quantum-optical planar arrays of atoms
- URL: http://arxiv.org/abs/2309.08487v1
- Date: Fri, 15 Sep 2023 15:46:33 GMT
- Title: Cooperative quantum-optical planar arrays of atoms
- Authors: Janne Ruostekoski
- Abstract summary: We describe theoretical methods commonly employed to analyze the cooperative responses of atomic arrays.
We explore some recent developments and potential future applications of planar arrays as versatile quantum interfaces between light and matter.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atomic planar arrays offer a novel emerging quantum-optical many-body system
in which light mediates strong interactions between the atoms. The regular
lattice structure provides a cooperatively enhanced light-matter coupling and
allows for increased control and harnessing of these interactions. In
subwavelength arrays, coherent scattering of incident light beams can be highly
collimated in the forward and backward direction, resembling one-dimensional
light propagation without the need for waveguides, fibers, or resonators. The
atomic planar arrays share common features with fabricated metasurfaces, formed
by thin nanostructured films that have shown great promise in manipulating and
structuring classical light. Here we describe theoretical methods commonly
employed to analyze the cooperative responses of atomic arrays and explore some
recent developments and potential future applications of planar arrays as
versatile quantum interfaces between light and matter.
Related papers
- Quantum nonlinear metasurfaces from dual arrays of ultracold atoms [0.4640835690336652]
We show how the coupling of light to more than a single atomic array can expand perspectives into the domain of quantum nonlinear optics.
The combination of two arrays is found to induce strong photon-photon interactions that can convert an incoming classical beam into highly antibunched light.
Such quantum metasurfaces open up new possibilities for coherently generating and manipulating nonclassical light.
arXiv Detail & Related papers (2022-01-17T17:47:11Z) - Quantum single-photon control, storage, and entanglement generation with
planar atomic arrays [0.0]
We show how to achieve quantum control of an incident single-photon pulse by engineering a two-dimensional atomic array.
Control is achieved by controlling classically or quantum mechanically the ac Stark shifts of the atomic levels.
We illustrate the control by manipulating the phase, phase superposition, polarization, and direction of a transmitted or reflected photon.
arXiv Detail & Related papers (2021-08-09T10:23:33Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Light-matter interactions in chip-integrated niobium nano-circuit arrays
at optical fibre communication frequencies [0.0]
We introduce subwavelength photonic nano-grating circuit arrays on the facet of niobium thin films to enhance light-matter interaction at fiber optic communication.
We find that optical resonance shifts to longer wavelengths with increasing nano-grating circuit periodicity, indicating a clear modulation of optical light with geometrical parameters of the device.
The observed tunable plasmonic photo-response in such compact and integrated nano-circuitry enables new types of metamaterial and plasmonics-based modulators, sensors, and bolometer devices.
arXiv Detail & Related papers (2021-06-22T17:59:01Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Single collective excitation of an atomic array trapped along a
waveguide: a study of cooperative emission for different atomic chain
configurations [0.0]
Ordered atomic arrays trapped in the vicinity of nanoscale waveguides offer original light-matter interfaces.
We study the decay dynamics of a single collective atomic excitation coupled to a waveguide in different configurations.
arXiv Detail & Related papers (2021-01-14T00:01:06Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z) - A subradiant optical mirror formed by a single structured atomic layer [0.0]
We report on the direct observation of the cooperative subradiant response of a two-dimensional (2d) square array of atoms in an optical lattice.
We show that the array acts as an efficient mirror formed by only a single monolayer of a few hundred atoms.
arXiv Detail & Related papers (2020-01-03T11:55:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.