Regression and Learning with Pixel-wise Attention for Retinal Fundus
Glaucoma Segmentation and Detection
- URL: http://arxiv.org/abs/2001.01815v1
- Date: Mon, 6 Jan 2020 23:54:27 GMT
- Title: Regression and Learning with Pixel-wise Attention for Retinal Fundus
Glaucoma Segmentation and Detection
- Authors: Peng Liu and Ruogu Fang
- Abstract summary: We present two deep learning-based automated algorithms for glaucoma detection and optic disc and cup segmentation.
We utilize the attention mechanism to learn pixel-wise features for accurate prediction.
- Score: 3.7687214264740994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Observing retinal fundus images by an ophthalmologist is a major diagnosis
approach for glaucoma. However, it is still difficult to distinguish the
features of the lesion solely through manual observations, especially, in
glaucoma early phase. In this paper, we present two deep learning-based
automated algorithms for glaucoma detection and optic disc and cup
segmentation. We utilize the attention mechanism to learn pixel-wise features
for accurate prediction. In particular, we present two convolutional neural
networks that can focus on learning various pixel-wise level features. In
addition, we develop several attention strategies to guide the networks to
learn the important features that have a major impact on prediction accuracy.
We evaluate our methods on the validation dataset and The proposed both tasks'
solutions can achieve impressive results and outperform current
state-of-the-art methods. \textit{The code is available at
\url{https://github.com/cswin/RLPA}}.
Related papers
- Deep Learning to Predict Glaucoma Progression using Structural Changes in the Eye [0.20718016474717196]
Glaucoma is a chronic eye disease characterized by optic neuropathy, leading to irreversible vision loss.
Early detection is crucial to monitor atrophy and develop treatment strategies to prevent further vision impairment.
In this study, we use deep learning models to identify complex disease traits and progression criteria.
arXiv Detail & Related papers (2024-06-09T01:12:41Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
cataract is a common eye disease and one of the leading causes of blindness and vision impairment.
We present a novel algorithm for cataract detection using near-infrared eye images.
Deep learning-based eye segmentation and multitask network classification networks are presented.
arXiv Detail & Related papers (2021-10-06T08:10:28Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Circumpapillary OCT-Focused Hybrid Learning for Glaucoma Grading Using
Tailored Prototypical Neural Networks [1.1601676598120785]
Glaucoma is one of the leading causes of blindness worldwide.
We propose, for the first time, a novel framework for glaucoma grading using raw circumpapillary B-scans.
In particular, we set out a new OCT-based hybrid network which combines hand-driven and deep learning algorithms.
arXiv Detail & Related papers (2021-06-25T10:53:01Z) - Blind deblurring for microscopic pathology images using deep learning
networks [0.0]
We demonstrate a deep-learning-based approach that can alleviate the defocus and motion blur of a microscopic image.
It produces a sharper and cleaner image with retrieved fine details without prior knowledge of the blur type, blur extent and pathological stain.
We test our approach on different types of pathology specimens and demonstrate great performance on image blur correction and the subsequent improvement on the diagnosis outcome of AI algorithms.
arXiv Detail & Related papers (2020-11-24T03:52:45Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - Optimal Transfer Learning Model for Binary Classification of Funduscopic
Images through Simple Heuristics [0.8370915747360484]
We attempt to use deep learning neural networks to diagnose funduscopic images, visual representations of the interior of the eye.
We propose a unifying model for disease classification: low-cost inference of a fundus image to determine whether it is healthy or diseased.
arXiv Detail & Related papers (2020-02-11T03:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.