Optimal Transfer Learning Model for Binary Classification of Funduscopic
Images through Simple Heuristics
- URL: http://arxiv.org/abs/2002.04189v3
- Date: Thu, 20 Feb 2020 21:41:36 GMT
- Title: Optimal Transfer Learning Model for Binary Classification of Funduscopic
Images through Simple Heuristics
- Authors: Rohit Jammula, Vishnu Rajan Tejus, Shreya Shankar
- Abstract summary: We attempt to use deep learning neural networks to diagnose funduscopic images, visual representations of the interior of the eye.
We propose a unifying model for disease classification: low-cost inference of a fundus image to determine whether it is healthy or diseased.
- Score: 0.8370915747360484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have the capacity to fundamentally revolutionize medical
imaging analysis, and they have particularly interesting applications in
computer-aided diagnosis. We attempt to use deep learning neural networks to
diagnose funduscopic images, visual representations of the interior of the eye.
Recently, a few robust deep learning approaches have performed binary
classification to infer the presence of a specific ocular disease, such as
glaucoma or diabetic retinopathy. In an effort to broaden the applications of
computer-aided ocular disease diagnosis, we propose a unifying model for
disease classification: low-cost inference of a fundus image to determine
whether it is healthy or diseased. To achieve this, we use transfer learning
techniques, which retain the more overarching capabilities of a pre-trained
base architecture but can adapt to another dataset. For comparisons, we then
develop a custom heuristic equation and evaluation metric ranking system to
determine the optimal base architecture and hyperparameters. The Xception base
architecture, Adam optimizer, and mean squared error loss function perform
best, achieving 90% accuracy, 94% sensitivity, and 86% specificity. For
additional ease of use, we contain the model in a web interface whose file
chooser can access the local filesystem, allowing for use on any
internet-connected device: mobile, PC, or otherwise.
Related papers
- InceptionCaps: A Performant Glaucoma Classification Model for
Data-scarce Environment [0.0]
glaucoma is an irreversible ocular disease and is the second leading cause of visual disability worldwide.
This work reviews existing state of the art models and proposes InceptionCaps, a novel capsule network (CapsNet) based deep learning model having pre-trained InceptionV3 as its convolution base, for automatic glaucoma classification.
InceptionCaps achieved an accuracy of 0.956, specificity of 0.96, and AUC of 0.9556, which surpasses several state-of-the-art deep learning model performances on the RIM-ONE v2 dataset.
arXiv Detail & Related papers (2023-11-24T11:58:11Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Feature Representation Learning for Robust Retinal Disease Detection
from Optical Coherence Tomography Images [0.0]
Ophthalmic images may contain identical-looking pathologies that can cause failure in automated techniques to distinguish different retinal degenerative diseases.
In this work, we propose a robust disease detection architecture with three learning heads.
Our experimental results on two publicly available OCT datasets illustrate that the proposed model outperforms existing state-of-the-art models in terms of accuracy, interpretability, and robustness for out-of-distribution retinal disease detection.
arXiv Detail & Related papers (2022-06-24T07:59:36Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images.
Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models.
Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%.
arXiv Detail & Related papers (2022-03-03T17:51:01Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Remote Pathological Gait Classification System [3.8098589140053862]
Gait analysis can be used to detect impairments and help diagnose illnesses and assess patient recovery.
The biggest publicly available pathological gait dataset contains only 10 subjects, simulating 4 gait pathologies.
This paper presents a new dataset called GAIT-IT, captured from 21 subjects simulating 4 gait pathologies, with 2 severity levels, besides normal gait.
arXiv Detail & Related papers (2021-05-04T17:21:29Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.