Data Curves Clustering Using Common Patterns Detection
- URL: http://arxiv.org/abs/2001.02095v1
- Date: Sun, 5 Jan 2020 18:36:38 GMT
- Title: Data Curves Clustering Using Common Patterns Detection
- Authors: Konstantinos F. Xylogiannopoulos
- Abstract summary: Analyzing and clustering time series, or in general any kind of curves, could be critical for several human activities.
New Curves Clustering Using Common Patterns (3CP) methodology is introduced.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For the past decades we have experienced an enormous expansion of the
accumulated data that humanity produces. Daily a numerous number of smart
devices, usually interconnected over internet, produce vast, real-values
datasets. Time series representing datasets from completely irrelevant domains
such as finance, weather, medical applications, traffic control etc. become
more and more crucial in human day life. Analyzing and clustering these time
series, or in general any kind of curves, could be critical for several human
activities. In the current paper, the new Curves Clustering Using Common
Patterns (3CP) methodology is introduced, which applies a repeated pattern
detection algorithm in order to cluster sequences according to their shape and
the similarities of common patterns between time series, data curves and
eventually any kind of discrete sequences. For this purpose, the Longest
Expected Repeated Pattern Reduced Suffix Array (LERP-RSA) data structure has
been used in combination with the All Repeated Patterns Detection (ARPaD)
algorithm in order to perform highly accurate and efficient detection of
similarities among data curves that can be used for clustering purposes and
which also provides additional flexibility and features.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
Time series is a special type of sequence data, a set of observations collected at even intervals of time and ordered chronologically.
Existing deep learning techniques use generic sequence models for time series analysis, which ignore some of its unique properties.
We propose a novel neural network architecture and apply it for the time series forecasting problem, wherein we conduct sample convolution and interaction at multiple resolutions for temporal modeling.
arXiv Detail & Related papers (2021-06-17T08:15:04Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
We propose RobustTAD, a Robust Time series Anomaly Detection framework.
It integrates robust seasonal-trend decomposition and convolutional neural network for time series data.
It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
arXiv Detail & Related papers (2020-02-21T20:43:45Z) - Autoencoder-based time series clustering with energy applications [0.0]
Time series clustering is a challenging task due to the specific nature of the data.
In this paper we investigate the combination of a convolutional autoencoder and a k-medoids algorithm to perfom time series clustering.
arXiv Detail & Related papers (2020-02-10T10:04:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.