論文の概要: Deep learning reveals hidden interactions in complex systems
- arxiv url: http://arxiv.org/abs/2001.02539v4
- Date: Thu, 12 Nov 2020 08:33:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-14 18:03:27.886378
- Title: Deep learning reveals hidden interactions in complex systems
- Title(参考訳): ディープラーニングが複雑なシステムにおける隠れたインタラクションを明らかにする
- Authors: Seungwoong Ha, Hawoong Jeong
- Abstract要約: AgentNetは、複雑なシステムに隠されたインタラクションを明らかにするために、ディープニューラルネットワークで構成されるモデルフリーのデータ駆動フレームワークである。
鳥の群れから得られた実証データにより、AgentNetは本物の鳥が提示する隠れた相互作用範囲を特定できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Rich phenomena from complex systems have long intrigued researchers, and yet
modeling system micro-dynamics and inferring the forms of interaction remain
challenging for conventional data-driven approaches, being generally
established by human scientists. In this study, we propose AgentNet, a
model-free data-driven framework consisting of deep neural networks to reveal
and analyze the hidden interactions in complex systems from observed data
alone. AgentNet utilizes a graph attention network with novel variable-wise
attention to model the interaction between individual agents, and employs
various encoders and decoders that can be selectively applied to any desired
system. Our model successfully captured a wide variety of simulated complex
systems, namely cellular automata (discrete), the Vicsek model (continuous),
and active Ornstein--Uhlenbeck particles (non-Markovian) in which, notably,
AgentNet's visualized attention values coincided with the true interaction
strength and exhibited collective behavior that was absent in the training
data. A demonstration with empirical data from a flock of birds showed that
AgentNet could identify hidden interaction ranges exhibited by real birds,
which cannot be detected by conventional velocity correlation analysis. We
expect our framework to open a novel path to investigating complex systems and
to provide insight into general process-driven modeling.
- Abstract(参考訳): 複雑なシステムからのリッチな現象は長い間興味をそそられてきたが、モデリングシステムのマイクロダイナミクスとインタラクションの形式を推論することは、人間の科学者によって一般的に確立された従来のデータ駆動アプローチでは依然として困難である。
本研究では,深層ニューラルネットワークを用いたモデルフリーなデータ駆動型フレームワークである agentnet を提案する。
AgentNetは、個々のエージェント間の相互作用をモデル化するために、新しい可変アテンションを持つグラフアテンションネットワークを使用し、任意の所望のシステムに選択的に適用可能な様々なエンコーダとデコーダを使用する。
本モデルでは,セル・オートマトン(ディスクレート),ビクセク・モデル(連続),活性ornstein-uhlenbeck粒子(非マルコフ粒子)などの多種多様なシミュレート・複合システムを用いて,エージェントネットの注意値が真の相互作用強度と一致し,訓練データに欠如した集団行動を示した。
羽の群れから得られた実証データにより,AgentNetは,従来の速度相関分析では検出できない,実際の鳥類が提示する隠れた相互作用範囲を識別できることを示した。
我々のフレームワークは、複雑なシステムを調査し、一般的なプロセス駆動モデリングに関する洞察を提供するための新しい道を開くことを期待する。
関連論文リスト
- LINOCS: Lookahead Inference of Networked Operators for Continuous Stability [4.508868068781057]
連続安定のためのネットワーク演算子のルックアヘッド駆動推論(LINOCS)を導入する。
LINOCSはノイズの多い時系列データに隠れた動的相互作用を識別するための頑健な学習手法である。
我々は、LINOCSの合成時系列データに基づく基底真理力学演算子を復元する能力を実証する。
論文 参考訳(メタデータ) (2024-04-28T18:16:58Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
このような相互作用を発見する代替手法として、ニューラル・インタラクション・推論(NIIP)を提案する。
NIIPは観測された関係制約を尊重する軌道のサブセットに低エネルギーを割り当てる。
別々に訓練されたモデル間での相互作用の型を交換するなどの軌道操作や、軌道予測を可能にする。
論文 参考訳(メタデータ) (2023-10-23T00:44:17Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
本研究では,対話対象の連続時間力学の不確実性を考慮したモデリングを初めて行った。
我々のモデルは、独立力学と信頼性のある不確実性推定との相互作用の両方を推測する。
論文 参考訳(メタデータ) (2022-05-24T08:36:25Z) - Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using
DeepONets [0.0]
本稿では,複雑な物理系に対する双方向モデリング手法を提案する。
我々は、小さなトレーニングデータセットが存在する場合、真のシステムの応答と低忠実度応答の相違をモデル化する。
パラメトリック不確実性を持ち、部分的には未知なモデルシステムにアプローチを適用する。
論文 参考訳(メタデータ) (2022-04-03T05:30:57Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Beyond Tracking: Using Deep Learning to Discover Novel Interactions in
Biological Swarms [3.441021278275805]
本稿では,システムレベルの状態を全体像から直接予測するディープ・ネットワーク・モデルを提案する。
結果の予測モデルは、人間の理解した予測モデルに基づいていないため、説明モジュールを使用する。
これは、行動生態学における人工知能の例である。
論文 参考訳(メタデータ) (2021-08-20T22:50:41Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
ニューラルネットワークでは、あらゆる相互作用する特徴は共通の隠蔽ユニットとの強い重み付けの接続に従う必要がある。
本稿では, 永続的ホモロジーの理論に基づいて, 相互作用強度を定量化するための新しい尺度を提案する。
PID(Persistence Interaction Detection)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-25T02:15:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。