Adaptive Stopping Rule for Kernel-based Gradient Descent Algorithms
- URL: http://arxiv.org/abs/2001.02879v2
- Date: Tue, 13 Jun 2023 14:19:55 GMT
- Title: Adaptive Stopping Rule for Kernel-based Gradient Descent Algorithms
- Authors: Xiangyu Chang, Shao-Bo Lin
- Abstract summary: We propose an adaptive stopping rule for kernel-based gradient descent algorithms.
We analyze the performance of the adaptive stopping rule in the framework of learning theory.
- Score: 27.002742106701863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an adaptive stopping rule for kernel-based gradient
descent (KGD) algorithms. We introduce the empirical effective dimension to
quantify the increments of iterations in KGD and derive an implementable early
stopping strategy. We analyze the performance of the adaptive stopping rule in
the framework of learning theory. Using the recently developed integral
operator approach, we rigorously prove the optimality of the adaptive stopping
rule in terms of showing the optimal learning rates for KGD equipped with this
rule. Furthermore, a sharp bound on the number of iterations in KGD equipped
with the proposed early stopping rule is also given to demonstrate its
computational advantage.
Related papers
- Bregman-divergence-based Arimoto-Blahut algorithm [53.64687146666141]
We generalize the Arimoto-Blahut algorithm to a general function defined over Bregman-divergence system.
We propose a convex-optimization-free algorithm that can be applied to classical and quantum rate-distortion theory.
arXiv Detail & Related papers (2024-08-10T06:16:24Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - Bregman Gradient Policy Optimization [97.73041344738117]
We design a Bregman gradient policy optimization for reinforcement learning based on Bregman divergences and momentum techniques.
VR-BGPO reaches the best complexity $tilde(epsilon-3)$ for finding an $epsilon$stationary point only requiring one trajectory at each iteration.
arXiv Detail & Related papers (2021-06-23T01:08:54Z) - Learning Stochastic Optimal Policies via Gradient Descent [17.9807134122734]
We systematically develop a learning-based treatment of optimal control (SOC)
We propose a derivation of adjoint sensitivity results for differential equations through direct application of variational calculus.
We verify the performance of the proposed approach on a continuous-time, finite horizon portfolio optimization with proportional transaction costs.
arXiv Detail & Related papers (2021-06-07T16:43:07Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
arXiv Detail & Related papers (2021-04-12T13:13:34Z) - Recurrent Model Predictive Control [19.047059454849897]
We propose an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems.
Our algorithm employs a recurrent function to approximate the optimal policy, which maps the system states and reference values directly to the control inputs.
arXiv Detail & Related papers (2021-02-23T15:01:36Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Bounding the expected run-time of nonconvex optimization with early
stopping [2.7648976108201815]
This work examines the convergence of gradient-based optimization algorithms that use early stopping based on a validation function.
We derive conditions that guarantee this stopping rule is well-defined, and provide bounds on the expected number of iterations and gradient evaluations needed to meet this criterion.
arXiv Detail & Related papers (2020-02-20T16:43:37Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z) - Boosting Algorithms for Estimating Optimal Individualized Treatment
Rules [4.898659895355356]
We present nonparametric algorithms for estimating optimal individualized treatment rules.
The proposed algorithms are based on the XGBoost algorithm, which is known as one of the most powerful algorithms in the machine learning literature.
arXiv Detail & Related papers (2020-01-31T22:26:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.