論文の概要: A new approach for trading based on Long Short Term Memory technique
- arxiv url: http://arxiv.org/abs/2001.03333v1
- Date: Fri, 10 Jan 2020 07:56:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 23:40:19.584076
- Title: A new approach for trading based on Long Short Term Memory technique
- Title(参考訳): 長期記憶技術に基づく取引の新しい手法
- Authors: Zineb Lanbouri and Saaid Achchab
- Abstract要約: 我々は,翌日の閉会価格を予測するために,2時間周波数(年次および日次パラメータ)を含むLong Term Memory(LSTM)モデルを構築した。
オープン・ハイ・ロー・クローズな指標やその他の金融比率に基づいて、このアプローチは株式市場の予測を改善することができることを証明している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The stock market prediction has always been crucial for stakeholders, traders
and investors. We developed an ensemble Long Short Term Memory (LSTM) model
that includes two-time frequencies (annual and daily parameters) in order to
predict the next-day Closing price (one step ahead). Based on a four-step
approach, this methodology is a serial combination of two LSTM algorithms. The
empirical experiment is applied to 417 NY stock exchange companies. Based on
Open High Low Close metrics and other financial ratios, this approach proves
that the stock market prediction can be improved.
- Abstract(参考訳): 株式市場の予測は常に利害関係者、トレーダー、投資家にとって重要だった。
我々は,翌日の閉会価格(一歩先)を予測するために,2時間周波数(年次および日次パラメータ)を含むLong Term Memory(LSTM)モデルを開発した。
4段階のアプローチに基づいて、この手法は2つのLSTMアルゴリズムのシリアルな組み合わせである。
実証実験はニューヨーク証券取引所417社に適用される。
オープン・ハイ・ロー・クローズな指標やその他の金融比率に基づいて、このアプローチは株式市場の予測を改善することができることを証明している。
関連論文リスト
- FinBERT-BiLSTM: A Deep Learning Model for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics [3.6423651166048874]
本稿では,双方向長短期メモリ(Bidirectional Long Short-Term Memory, Bi-LSTM)ネットワークとFinBERTを併用して,暗号通貨の予測精度を向上させるハイブリッドモデルを提案する。
このアプローチは、先進的な時系列モデルと感情分析を組み合わせることで、不安定な金融市場の予測において重要なギャップを埋める。
論文 参考訳(メタデータ) (2024-11-02T14:43:06Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - FinBERT-LSTM: Deep Learning based stock price prediction using News
Sentiment Analysis [0.0]
市場における短期的な動きを予測することで、投資家は投資に対するリターンを大きく得ることができる。
私たちはDeep Learning Networkを使って株価を予測し、財務、ビジネス、テクノロジーのニュース記事を同化しています。
論文 参考訳(メタデータ) (2022-11-11T15:13:16Z) - Univariate and Multivariate LSTM Model for Short-Term Stock Market
Prediction [1.6114012813668934]
本稿では,インド企業2社の短期株価予測のための2つの異なる入力アプローチを持つLSTMモデルを提案する。
10年間の歴史的データ(2012-2021)を,ヤフー金融のウェブサイトから抽出し,提案手法の分析を行った。
論文 参考訳(メタデータ) (2022-05-08T07:01:12Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Dual-CLVSA: a Novel Deep Learning Approach to Predict Financial Markets
with Sentiment Measurements [11.97251638872227]
本稿では、取引データとそれに対応する社会的感情測定の両方を用いて、個別のシーケンス・ツー・シーケンス・チャネルを通じて、金融市場の動きを予測するための新しい深層学習手法であるDouble-CLVSAを提案する。
その結果、両CLVSAは2種類のデータを効果的に融合させ、感情測定が金融市場の予測に有益であるだけでなく、予測システムの性能を高めるための余分な利益性も備えていることが明らかとなった。
論文 参考訳(メタデータ) (2022-01-27T20:32:46Z) - Should You Take Investment Advice From WallStreetBets? A Data-Driven
Approach [37.86739837901986]
Reddit の WallStreetBets (WSB) コミュニティは,現在 Meme ストックと呼ばれているものの株価に影響を及ぼすという,その顕著な役割から,注目を浴びている。
本稿は、2019年1月から2021年4月までのWSBデータを分析し、コミュニティのレコメンデーションに依存する投資戦略がいかに成功していたかを評価する。
論文 参考訳(メタデータ) (2021-05-06T14:47:03Z) - Stock Market Trend Analysis Using Hidden Markov Model and Long Short
Term Memory [0.0]
本稿では,隠れマルコフモデルを株式市場に適用し,予測を行う。
GMM-HMM, XGB-HMM, GMM-HMM+LSTM, XGB-HMM+LSTMの4つの改良手法について述べる。
論文 参考訳(メタデータ) (2021-04-20T00:49:13Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。